Experiences with Charm++ and NAMD on the Summit POWER9/Volta Supercomputer

Charm++ 2019

http://www.ks.uiuc.edu/Research/namd/

NAMD: Practical Supercomputing for Biomedical Research

"widest-used application" on NCSA Blue Waters, NSF-specified benchmark for successor machine

"by a very large margin the most used code" at Texas Advanced Computing Center (2nd largest)

Early adopters of workstation clusters (1993), Linux clusters (1998), and CUDA (2007).

Application readiness/early science projects on

- Argonne Theta (10 PF Cray KNL, completed)
- Oak Ridge Summit (200 PF Power9/Volta, 2018)
- -Argonne Aurora (200 PF Cray KNH, 2019)
- Argonne Aurora (1 EF Intel Xeon + X^e, 2021)

"For outstanding contributions to the development of widely used parallel software for large biomolecular systems simulation"

Ultimate Goal of Structural Biology Construction of High-Resolution Structural Models

The 3.8 Å resolution cryo-EM structure of Zika virus. Sirohi, et al., *Science* 352: 467, 2016

Emad Tajkhorshid Illinois

Highly Localized Membrane Curvature Induced by Deeply Inserted Envelope Proteins

M. Sevvana et al., Refinement and Analysis of the Mature Zika Virus Cryo-EM Structure at 3.1 Å Resolution, *Structure*, Vol. 26, Issue 9, (2018).

Full Zika Envelope

Envelope: 2.5M atoms Full System ~ 20M atoms Solvent/ions not shown

Emad Tajkhorshid Illinois

Full Zika Envelope

Bad setup causes unstable simulation!

Emad Tajkhorshid Illinois

NAMD Hybrid Decomposition

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Kale et al., J. Comp. Phys. 151:283-312, 1999.

- Separate but related work decomposition.
- "Compute objects" facilitate iterative, measurement-based load balancing system.

Objects are assigned to processors and queued as data arrives.

Charm++ 2019

Overlapping GPU and CPU with Communication

One Timestep

Phillips *et al.*, SC2008

Streaming GPU Results to CPU

- Allows incremental results from a single grid to be processed on CPU before grid finishes on GPU
- GPU side:
 - Write results to host-mapped memory (also without streaming)
 - _____threadfence__system() and ___syncthreads()
 - Atomic increment for next output queue location
 - Write result index to output queue
- CPU side:

Charm++ 2019

Poll end of output queue (int array) in host memory

Allows merging and prioritizing of remote and local work

Non-Streaming Kernel

29,835,000 29,836,000 2	29,837,000 29,
······	

Charm++ 2019

Charm++ Projections performance-analysis tool

Streaming Kernel

000	28,401,000	28,402,000	28,403,000	28,404,000 + + + + + + + + + + + + + + + + + +	28,405,000	28,405,000	28,407,000	28,408,000	28,409,000
									· · ·
		d di di di di							
]									
					(m <mark>inipipipi</mark> m)				
				· · · · · · · · · · · · · · · · · · ·					
					(majeje (niji) i n <mark>ij</mark>				
					(
					┊╾┊╸┊╼╴┊┻┥				

Charm++ Projections performance-analysis tool

Charm++ 2019 Biomedica Beck

Summit will replace Titan as the OLCF's leadership supercomputer

- Many fewer nodes
- Much more powerful nodes
- Much more memory per node and total system memory
- Faster interconnect
- Much higher bandwidth between CPUs and GPUs
- Much larger and faster file system

Feature

Application Performance

Number of Nodes

Node performance

Memory per Node

NV memory per Node

Total System Memory

System Interconnect (no injection bandwidth)

Interconnect Topology

Processors

File System

Peak power consumption

	Titan	Summit
е	Baseline	5-10x Titan
	18,688	~4,600
	1.4 TF	> 40 TF
	32 GB DDR3 + 6 GB GDDR5	512 GB DDR4 + HBM
	0	1600 GB
	710 TB	>10 PB DDR4 + HBM + Non-vo
ode	Gemini (6.4 GB/s)	Dual Rail EDR-IB (23 GB/s)
	3D Torus	Non-blocking Fat Tree
	1 AMD Opteron™ 1 NVIDIA Kepler™	2 IBM POWER9™ 6 NVIDIA Volta™
	32 PB, 1 TB/s, Lustre®	250 PB, 2.5 TB/s, GPFS™
on	9 MW	15 MW
		Sational Laboratory

Presentation name 13

NAMD 2.13 released Nov 9

- First release since December 2016, many improvements
- All force calculation now done on GPU
- CUDA 9 and Volta compatibility
- IBM PAMI SMP machine layer
- Support for two-billion-atom simulations
- New constant pH, improved QM-MM
- Improved core binding of CUDA CPU threads

Charm++ 2019

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Improved CUDA error reporting, print hostname on Cray

2018: Summit has a noise problem - now fixed!

	14,200,000 	14.240.000	14,280,000	14.320,000	14,360,000	14,400,000	14,440,000	as 14,480,000 ++++++++	14,520,000	14,560,000	14.600.000	14,640.000	14,680
PE410			implumini ini		<u>u</u>		<u>inducijani</u>				<u>()</u>		
(41, 58) PE 412		dan bir bir bir bir bir bir bir			10		no (mon o			in he in his in his his	uh l		niin
(41,38) PE618													1010
(33,28) PE 1014													
(38, 32) PE 1446													
(34, 30)													
PE 2889 (37, 35)					I								
PE 3588 (34, 3 0)					Ŭ.								1 ,1
PE 4074 (35, 30)													
PE 4362 (33, 28)					ii.								I (I)
PE 4434					i								iiii
PE 5046													
(34, 29) PE 5082							01000						
(34, 29) PE 5154													
(34, 29) PF 51 72													
(33, 28)													
(43, 39)					1								
PE 6918 (33, 28)					1								
PE 7224 (33, 29)		the state of the state of the			l								
								` 80 n					

2018 Charm++/NAMD configuration

- IBM PAMI SMP machine layer
 - Initially developed for Blue Gene series •
 - No dedicated communication thread
- Single GPU per process (6 processes per node, 6 threads per process) • Leaving one core free per resource set seems to reduce noise • One core per socket is reserved by jsrun, so 8 unused cores per node
- With thread to core affinity:

Charm++ 2019

- 4-27:4,32-55:4,60-83:4,92-115:4,120-143:4,148-171:4
- jsrun -r6 -g1 -c7 namd2 +ignoresharing +ppn 6 +pemap • Or without (expected to run slower, but sometimes faster):
 - jsrun --bind rs -r6 -g1 -c7 namd2 +ignoresharing +ppn 6 ullet

2019 Charm++/NAMD configuration

IBM PAMI SMP machine layer

Charm++ 2019

- Initially developed for Blue Gene series ullet
- No dedicated communication thread
- Single GPU per process (6 processes per node, 6 7 threads per process)
 - Leaving one core free per resource set seems to reduce noise
 - One core per socket is reserved by jsrun, so 8 2 unused cores per node
- With thread to core affinity (plus resource-set binding for CUDA thread):
 - jsrun --bind rs -a1 -r6 -g1 -c7 namd2 +ignoresharing +ppn 7 +pemap 0-83:4,88-171:4 4-27:4,32-55:4,60-83:4,92-115:4,120-143:4,148-171:4
- Or without (expected to run slower, but sometimes faster):
 - jsrun --bind rs -r6 -g1 -c7 namd2 +ignoresharing +ppn 6

"When bad OS updates happen to good scientific applications"

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

"Words of wisdom and comfort on the loss of 90% of your supercomputer performance" Or

- DON'T PANIC
- Recompile

Charm++ 2019

- Try MPI instead of PAMI communication layer Report issue to user support Periodically ask for updates Escalate at every opportunity Allow unaffected multi-copy early science to run

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Helpful Activities

- Blame <vendor>
- Curse <vendor>

Charm++ 2019

- Wonder if this is related to your contact leaving
- "Not my circus, not my monkeys."
- "No, I will not fix your supercomputer."
- Update Charm++ to bleeding edge...

Neutral Activities

Hope she wasn't the only one who knows the code

Unhelpful Activities

Forget you updated Charm++

Charm++ 2019

- Blame instability with new Charm++ on compiler
- Change integrator build flag to -O0 as workaround
- Forget you changed build flag to -O0
- When <vendor> fixes PAMI library, don't check performance until Friday before GTC
- Fantasize about throwing <vendor> under bus

Helpful Activities (2)

- Remember -O0 change to integrator
- Realize binary from November works fine now
- Notice compiler from November is still available
- Notice compiler from November doesn't work now
- Realize that Charm++ from November works
- "git log src/archpami-linux-ppc64le"
- "git revert ...

Charm++ 2019

Comparison vs 2018

Fairer Comparison vs 2018

Comparison 7 vs 6 Cores per GPU

CPU-GPU comparison for large benchmarks

"Fair" comparison for large benchmarks

Charm++ Projections tool shows bottlenecks

"Fix" problems with simpler integrator

Machine comparison for large benchmarks

"Fair" comparison for large benchmarks

Two billion atoms

Summit Early Science: Modeling of a Minimal Cell Envelope

0.4 µm

Protein Components Aquaporin Z Copper Transporter (CopA) F1 ATPase Lipid Flipase (MsbA) Molybdenum transporter (ModBC) Translocon (SecY) Methionine transporter (MetNI) Membrane chaperon (YidC) Energy coupling factor (ECF) Potassium transporter (KtrAB) Glutamate transporter (Glt_{Tk}) Cytidine-Diphosphate diacylglycerol (Cds) Membrane-bound protease (PCAT) Folate transporter (FoIT)

3.7 M lipids, 1,400 proteins, 416 M water molecules, 2.4 M ions

Conclusions and Future Work

- Summit represents a new era in GPU acceleration
 - The CPU will be the bottleneck for many codes
 - Optimizing/vectorizing/parallelizing on the CPU not enough Offload everything practical to the GPUs
- Worry about optimizing the CUDA code last Stage/stream data to reduce CPU/network bottlenecks
- A supercomputer is not just a large cluster

Charm++ 2019

- IBM knows this (Blue Gene series), Summit now scales well
- Change is bad, performance regression tests are good
- New Cray machines on the horizon (Perlmutter and Aurora)

Acknowledgments

Antti-Pekka Hynninen, Ke Li, & Peng Wang, NVIDIA Sameer Kumar & **Bilge Acun, IBM** Tjerk Straatsma, OLCF William Kramer, NCSA Jodi Hadden, Delaware Rommie Amaro, UCSD Lorenzo Casalino, UCSD Abhi Singharoy, ASU

NIH Center for Macromolecular Modeling and Bioinformatics University of Illinois at Urbana-Champaign

Related Talks to Stream

- Available at on-demand-gtc.gputechconf.com:
 - S9302: Petascale Molecular Dynamics Simulations on the Summit POWER9/Volta Supercomputer
 - S9503 Using Nsight Tools to Optimize the NAMD **Molecular Dynamics Simulation Program**
 - S9589 Interactive High-Fidelity Biomolecular and Cellular Visualization with RTX Ray Tracing APIs
 - S9594 Bringing State-of-the-Art GPU-Accelerated Molecular Modeling Tools to the Research Community

Charm++ 2019

