
Distributed Garbage Collection for General Graphs
Hari Krishan

Louisiana State University
hari1106@gmail.com

Steven R. Brandt
Louisiana State University

sbrandt@cct.lsu.edu

Costas Busch
Louisiana State University

busch@csc.lsu.edu

Gokarna Sharma
Kent State University
sharma@cs.kent.edu

Abstract
We propose a scalable, cycle-collecting, decentralized, ref-
erence counting garbage collector with partial tracing. The
algorithm is based on the Brownbridge system but uses four
different types of references to label edges. Memory usage
is O (logn) bits per node, where n is the number of nodes in
the graph. The algorithm assumes an asynchronous network
model with a reliable reordering channel. It collects garbage
in O (Ea ) time, where Ea is the number of edges in the in-
duced subgraph. The algorithm uses termination detection
to manage the distributed computation, a unique identifier
to break the symmetry among multiple collectors, and a
transaction-based approach when multiple collectors con-
flict. Unlike existing algorithms, ours is not centralized, does
not require barriers, does not require migration of nodes,
does not require back-pointers on every edge, and is stable
against concurrent mutation.
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1 Introduction
Garbage-collected languages are widely used in distributed
systems, including big-data applications in the cloud [5, 8, 15].
Languages in this space include Java, Scala, Python, etc., and
platforms include Hadoop, Spark, etc. Bruno et al. [5] studied
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necessity and significance of garabge collection in big data
environments. Garbage collection is seen as a significant
benefit by the developers of these applications and platforms
because it eliminates a large class of programming errors,
which translates into higher developer productivity.

One significant place where the convenience of garbage
collection does not exist, however, is in distributed, asynchro-
nous multitask systems (AMT). Frameworks in this space
include Charm++ [12], UINTAH [18], HPX [11], etc. The cur-
rent state of the art with these high-performance scientific
codes is to use simple reference counting and to manually
free edge references to reclaimmemory. From private conver-
sations, the authors know that these research groups have
struggled with memory issues and would like to have an
option for garbage collection.
What is needed is something distributed, decentralized,

scalable, that can run without “stopping the world,” and has
good time and space complexity.
There are two main types of garbage collectors, namely

Tracing and Reference Counting (RC). Tracing collectors
track all the reachable objects from the root (in the reference
graph) and reclaim all the unreachable objects. RC collectors
count the number of objects pointing to a given block of data
at any point in time. When a reference count is decremented
and becomes zero, its object is garbage, otherwise itmight be
garbage and some tracing of edges through a subset of the
graph is necessary (note that the cost can be reduced if trac-
ing is not done aggressively). Unfortunately, cycles among
distributed objects are frequent [22]. Previous attempts at
distributed garbage collection, e.g. [9, 13, 14, 16, 17, 25], suffer
from the need for centralization, global barriers, the migra-
tion of objects, or have inefficient time and space complexity
guarantees.
We note that our algorithms fits the restrictions of the

CONGEST model [7], commonly used to analyze dis-
tributed algorithms. This model describes a distributed sys-
tem where the topology of the network is restricted such
that each node can only send messages along its edges to
its immediate neighbors. Communication and computation
is synchronous in CONGEST , meaning that computation
is divided into rounds during which each node can send a
message to each of its neighbors, and each message is of
size O (log(n)) bits. The model allows, however, that nodes
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and communication links experience no faults and nodes
have unique IDs. In the present work, this model is used for
determining time complexity.

Contributions: We present a hybrid reference counting al-
gorithm for garbage collection in distributed systems that
is described by the CONGEST model [7] and requires
that messages are neither lost nor duplicated. Our algorithm
collects both non-cyclic and cyclic garbage in distributed
systems of arbitrary topology by advancing on the three
reference count collector which only works for a single ma-
chine [3] based on the Brownbridge system1 [4]. The advan-
tage for such systems is that they can frequently determine
that a reference count decrement does not create garbage
without doing any non-trivial work (they only need to check
that the “strong count” is not zero).

This work builds on the algorithm described in [3] (herein
called SWP because it uses three types of references: Strong,
Weak, and Phantom). The multi-collector algorithm de-
scribed in the present work (herein called SWPR because it
uses four types of references: Strong, Weak, Phantom, and
Recovered) work extends SWP in three significant ways.
First, SWPR never locks more than one object at a time. The
SWP algorithm had to lock two nodes to properly update
an edge, and an arbitrarily large number of nodes could be
locked during a collection. Thus, SWPR is more suitable for
use in a distributed setting and better able to exploit paral-
lelism. Second, SWP requires two bits of data to be tracked
per edge in the graph, whereas SWPR requires none.
Our proposed algorithm is scalable because it collects

garbage in O (Ea ) time using only O (logn) bits memory per
node, where Ea is the number of edges in the affected sub-
graph G ′ (the set of nodes whose status as garbage is un-
certain as a result of a given edge deletion) and n is the
number of nodes of the reference graphG . Moreover, in con-
trast to previous work on distributed garbage collection, our
algorithm does not need centralization, global barriers, or
the migration of objects. Apart from the benefits mentioned
above, our algorithm handles concurrent mutation (addition
and deletion of edges and reclamation of nodes in the refer-
ence graph) and provides liveness and safety guarantees by
maintaining a property called isolation. Theorems 11 and 12
prove that when a collection process works alone (i.e. in iso-
lation), it is guaranteed to collect garbage and not to reclaim
it prematurely. Theorem 16 proves that when multiple col-
lection processes interact, our synchronization mechanisms
allow each of them to act as if they were working alone, and
Theorems 20 and 21 prove the correctness in this setting.
To the best of our knowledge, this is the first algorithm for

1 Note, the original algorithm of Brownbridge suffered from premature
collection, and subsequent attempts to remedy this problem needed expo-
nential time in certain scenarios [20, 23]. Those limitations were addressed
in [3].

garbage collection in distributed systems that simultaneously
achieves such guarantees.

RelatedWork: Prior work on distributed garbage collection
is vast; Jones et al. [10] provide overall study of automatic
memorymanagement andwe discuss here the papers that are
closely related to our work. The marking algorithm proposed
by Hudak [9] requires a global barrier. All local garbage col-
lectors coordinate to start the marking phase. Once the mark-
ing phase is over in all the sites, then the sweeping phase
continues. Along with the marking and sweeping overhead,
there are consistency issues in tracing based collectors [21].
Ladin and Liskov [13] compute reachability of objects in

a highly available centralized service. This algorithm is logi-
cally centralized but physically replicated, hence achieving
high availability and fault-tolerance. All objects and tables
are backed up in stable storage. Clocks are synchronized
and message delivery delay is bounded. These assumptions
enable the centralized service to build a consistent view of
the distributed system. The centralized service registers all
the inter-space references and detects garbage using a stan-
dard tracing algorithm. This algorithm has scalability issues
due to the centralized service. A heuristic-based algorithm
by Le Fessant [14] uses the minimal number of inter-node
references from a root to identify “garbage suspects” and
then verifies the suspects. The algorithm propagates marks
from the references to all the reachable objects. A cycle is de-
tected when a remote object receives only its own mark. The
algorithm needs tight coupling between local collectors and
time complexity for the collection of cycles is not analyzed.
Gog et al. [8] introduced region-based memory management
in big data environments where each region contains a col-
lection of similar objects with well-defined lifetimes. This
region-based collection reduces the overhead of collection
while offloading the decision about the choice of region for
a particular object to the programmer.
Similar to the present work, Clebsch et al. [6] proposed

an algorithm for concurrent garbage collection based on the
actor paradigm. This algorithm identifies cyclic garbage us-
ing a dedicated actor for detecting cyles who has a global
view of the system by collecting local snapshots from all the
actors. This technique introduces a message size overhead
that does not fit within the CONGEST model (since all
messages cannot be bounded to O (logn) size). Even apart
from message size, the centralized cycle detector will create
performance bottleneck. and heavy load on central compo-
nent.
Collecting distributed garbage cycles by backtracking is

proposed by Maheshwari and Liskov [17]. This algorithm
first hypothesizes that objects are dead and then tries to
backtrack and prove whether that is true. The algorithm
needs to use an additional data structure to store all inter-site
references. An alternative approach of distributed garbage
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collection by migrating objects was proposed by Mahesh-
wari and Liskov [16]. Both of the algorithms use heuristics
to detect garbage. The former one uses more memory, the
latter one increases the overhead by moving the objects
between the sites. Recently, Veiga et al. [25] proposed an
algorithm that uses asynchronous local snapshots to identify
global garbage. Cycle detection messages (CDM) traverse
the reference graph and gain information about the graph. A
drawback of this approach is that the algorithm doesn’t work
with the CONGEST model. Any change to the snapshots
has to be updated by local mutators, forcing current global
garbage collection to quit. For a thorough understanding of
the literature, we recommend reading [1, 21].

It is shown in [2, 24] that there is a strong relation between
distributed termination detection and distributed garabge
collection. Tel et al. have shown that a distributed termi-
nation detection algorithm (DTA) can be derived from any
distributed garabge collector [24]. Blackburn et al. described
several distributed garbage collectors by treating the DTA
and the garbage collector separately [2]. This work follows
that general methodology by making repeated use of a mark-
ing algorithm beginning at the node initiating a collection
operation. We again make use of a DTA when reconciling
multiple collection operations by ensuring that their interac-
tions are eventually acyclic (see Lemma 13).

Paper Outline: Section 2 describes the garbage collection
problem, constraints involved in the problem, and the model
for which the algorithm is presented. Section 3 explains
the single collector version of the algorithm (SWPR-1) and
provides correctness, time, and space guarantees. Section
4 extends the results of Section 3 to the multiple collector
scenario. Section 5 presents the test results of the algorithm
through a simulator implemented in Java. Finally, Section 6
concludes the paper with a short discussion. The pseudocode
for the algorithms may be found in the Appendix.

2 Model and Preliminaries
Distributed System: We consider a distributed system of
nodes where each node operates independently and com-
municates with other nodes through message passing. The
underlying topology of the system is assumed to be arbi-
trary but connected. Each node has a queue to receive mes-
sages, and in response to a message a node can only read
and write its own state and send additional messages. We
further assume that the nodes can communicate over a re-
liable reordering channel, i.e. that messages are never lost
or duplicated. These properties make our system compatible
with the CONGEST asynchronous network model with
no failures [19].

Basic Reference Graph: We model the relationship among
various objects and pointers in memory through a directed
graphG = (V ,E), which we call a reference graph. The graph

G has (at least) a special node R, which we call the root. Node
R represents global and stack pointer variables, and thus does
not have any incoming edges. Each node in G is assumed to
contain a unique ID. All adjacent nodes to a given node in
G are called neiдhbors , and denoted by Γ. The in-neighbors
of a node x ∈ G can be defined as the set of nodes whose
outgoing edges are incident on x , represented by Γin (x ). The
out-neighbors of x can be defined as the set of nodes whose
incoming edges originate on x , represented by Γout (x ). Note
that each node x ∈ G does not know Γin (x ) at any point in
time.

Distributed Garbage Collection Problem: All nodes in G
can be classified as either live (i.e., not garbage) or dead (i.e.,
garbage) based on a property called reachability. Live and
dead nodes can be defined as below:
Reachable (y,x ) = x ∈ Γout (y) ∨ (x ∈ Γout (z) |

Reachable (y, z))
Live (x ) = Reachable (R,x )
Dead (x ) = ¬Live (x )
We allow the live portion of G, denoted as G ′, to be mu-

tated while the algorithm is running, and we refer to the
source of these mutations as the Mutator. The Mutator can
create nodes and attach them to G ′, create new edges be-
tween existing nodes of G ′, or delete edges (and thereby
reclaim nodes) from G ′. Moreover, the Mutator can perform
multiple events (creation and deletion of edges) simultane-
ously. The Mutator, however, can never mutate the dead
portion of the graph G ′′ = G\G ′.

Axiom 1 (Immutable Dead Node). The Mutator cannot mu-
tate a dead node.

Axiom 2 (Node Creation). All nodes are live when they are
created by the Mutator.

From Axiom 1, it follows that a node that becomes dead
will never become live again.

Each node experiencing deletion of an incoming edge has
to determine whether it is still live. If a node detects that it
is dead then it must be removed from the graph G.

Definition 1 (Distributed Garbage Collection Problem).
Identify the dead nodes in the reference graphG and reclaim
them.

Classification of Edges in G: We classify the edges in G
asweak or stronд according to the Brownbridge method [4].
This classification does not need preprocessing of G and
can be done directly at the time of creation of G. Chains
of strong edges connect the root R to all the nodes of G
and contain no cycles. The weak edges are required for all
cycle-creating edges inG . The advantage of the Brownbridge
method is that it permits less frequent tracing of the outgoing
edges. Without a distinction between strong and weak edges,
tracing is required after every edge deletion that does not
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Figure 1.We depict all the ways in which an initiator node, I ,
can be connected to the graph at the beginning of a garbage
collection trace. Circles represent sets of nodes. Dotted lines
represent one or more non-strong paths (i.e. paths which
contain at least one weak edge). Solid lines represent one or
more strong paths. A T-shaped end-point indicates the root,
R. If C ′, D ′, E ′ and F are empty sets, I is garbage, otherwise
it is not.

Set Name Nodes in Set Comment

Purely Dependent B B’ if I is garbage,
so this set

Dependent B B′ C C ′ Will phantomize

Supporting C ′ D ′ E ′ F
If this set is not empty,

I is not garbage
Independent D D ′ E E ′ F Will not phantomize

Build D ′ E ′ F
If this set is not empty,
recover is not necessary

Recovery C ′
The intersection of
the dependent and
supporting sets

Affected B B′ C C ′

D D ′ E E ′

Figure 2. A summary of how nodes related to the initiator.
See Fig. 1

bring the reference count to zero. In the Brownbridgemethod,
if a strong edge remains after the deletion of any edge, the
node is live and no tracing is necessary. Fig. 1 illustrates
an example reference graph G with strong (solid) and weak
(dotted) edges.

In this work, we make use of a third kind of edge in addi-
tion to strong and weak: the phantom edge. A phantom edge
is in a temporary and indeterminate state, neither strong
nor weak, that the garbage collection algorithm uses while
trying to determine whether the edge is strong, weak, or
garbage.

Weight-based Edge Classification for the Reference
GraphG: We assign weights to the nodes as a means of clas-
sifying the edges in G. Each node maintains two attributes
weiдht andmax-weight, as well as counts of strong and weak
incoming edges. The weight of the root, R, is zero. For an
edge to be strong, the weight of the source must be less
than the weight of the target. Themax-weight of a node is
defined as the maximum weight of the node’s in-neighbors.
Messages sent by nodes contain theweiдht of the sender so
that the out-neighbors can keep track of their strong count,
weak count, andmax-weight . When a node is created, its
initial weight is given by adding one to the weight of the
first node to reference it.

Lemma 1 (Strong Cycle Invariant). No cycle of strong edges
will be formed by weight-based edge classification.

Proof. By construction, for any node y which is reachable
from a node x by strong edges, y must have a larger weight
than x . Therefore, if x is reachable from itself through a cycle,
and if that cycle is strong, x must have a greater weight than
itself, which is impossible. □

Terminology: A path is an ordered set of edges such that
the destination of each edge is the origin of the next. A path
is called stronд if it consists exclusively of strong edges. If it
contains any weak edges, it is called non-strong. We say two
nodes are related if a path exists between them.
A node, x , is a member of the dependent set of I if all

strong paths leading to x originate on I (i.e. B, B′, C , and C ′
in Fig. 1).
The purely dependent set of I consists of the nodes that

have no path from R (i.e. B, and B′ in Fig. 1). If I is garbage,
then so are its purely dependent nodes.
A node, y, is a member of the supportinд set of I if there

is a path from R to y, and from y to I (i.e. C ′, D ′, E ′, and F
in Fig. 1 ). If the supporting set is empty, then I is garbage,
otherwise it is not.
A node, z, is a member of the independent set of I if z is

related to I and there is at least one strong path from R to z
(i.e. D, D ′, E, E ′, and F in Fig. 1).

A node, x , is a member of the build set of I if it is both
a member of the supporting set and the independent set.
Equivalently, a node, x is said to be in the build set if a
strong path from R to x exists, and a non-strong path from
x to I exists (i.e. D ′, E ′ and F in Fig. 1).

A node, x , is a member of the recovery set of I if it is
both a member of the supporting set and the dependent set
(i.e. C ′ in Fig. 1). During the process of phantomization, the
dependent set will phantomize.
A node, x , is said to be in the affected set if there exists a

path, p, from I to x , such that no node found along p (other
than x itself) has a strong path from R (i.e. everything except
F in Fig. 1).
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Phantomization

Recovery

Build Reclaim

If Build Set is non-empty

If Build Set is empty

If Recovery set is non-empty

If Recovery set is empty

Figure 3. An illustration of the phase transitions performed
by an initiator in the algorithm.

These sets are summarized in Fig. 2 for an example refer-
ence graph G given in Fig. 1.

3 Single Collector Algorithm (SWPR-1)
For the single collector, we assume that every mutation inG
is serialized and that the Mutator does not create or delete
edges in G during a collection process (i.e. the sequence of
messages and state changes needed to determine the live-
ness of a node). When the last strong edge to a node, x , in
G is deleted, but Γin (x ) is not empty, x becomes an initiator.
The initiator starts a set of graph traversals which we call
phases: phantomization, recovery, building, and reclaiming.
We classify the latter three phases (recovery, building, and
reclaiming) as correction phases. Fig. 3 provides a flow dia-
gram of the phases of an initiator and Algorithm 1 provides
a highlevel pseudocode of how the SWPR-1 algorithm works.

As illustrated in Fig. 1, a node I ∈ G is dead if and only
if its supporting set is empty. If I is discovered to be dead,
then its purely dependent set is also dead. Even when the
supporting set does not intersect the affected set (i.e. when
C ′, D ′ and E ′ are empty), and thus none of the nodes sup-
porting the initiator can receive messages from the initiator,
our algorithm will still detect whether the supporting set is
empty.

3.1 Phantomization Phase
For a node ofG to become a phantom node, the node must (1)
have just lost its last strong edge, and (2) has at least oneweak
edge, (3) not already be a phantom node. The initiator node
is, therefore, always a phantom node, and phantomization
always begins with the initiator. When a node w becomes
a phantom node, it (1) toggles, i.e. it increases its weight to
maxweight + 1, thus converting all its incoming weak edges
to strong edges; and (2) it sends phantomize messages to all
nodes in Γout (w ). From then on, all the outgoing edges from

Algorithm 1: single collector algorithm for a node
x ∈ G. Required variables on each node: weight,
max weight, strong count, weak count, and phan-
tom count, wait count, parent pointer, and state ∈
(healthy,phantom, recover ,build,dead )

if no incoming stronд edge to x ∧ Γin (x ) , ∅ ∧ x is not an init iator
∧ x is not a phantom nodethen

x becomes both an initiator and phantom node;
x .phase ← phantomizinд; send all the nodes in Γout (x ) a
phantomize message and label all outgoing edges phantom;

if x is not a phantom node ∧ x receives a phantomize messagethen
if no incoming stronд edge to x then

x becomes a phantom node (but not an init iator );
x .phase ← phantomizinд; send all the nodes in Γout (x )
a phantomize message and label all outgoing edges
phantom;

else
send a r eturn message to the node it received
phantomize message from;

if x is not an init iator ∧ x .phase == phantomizinд ∧ a
r eturn message from all the nodes in Γout (x ) is receivedthen

send a r eturn message to the node it received phantomize
message from;

if x is an init iator ∧ x .phase == phantomizinд ∧ x received a
r eturn message from all the nodes in Γout (x )then

if build set is not emptythen
x .phase ← buildinд; send a build message to all the
nodes in Γout (x );

else
x .phase ← r ecover inд; send a r ecover message to all
the nodes in Γout (x );

if x is not an init iator ∧ x receives a build message from ythen
if x is a phantom nodethen

x .phase ← buildinд; perform toggling to convert
phantom edges to stronд or weak edges; decrement the
phantom count, increment the stronд count; send a
build message to all the nodes in Γout (x );

else
perform toggling, if necessary; decrement the phantom
count, increment either the stronд count or the weak
count depending on whether y .weiдht < x .weiдht ; send
a r eturn message to the node it received build message
from;

if x is not an init iator ∧ x receives a r ecover messagethen
if stronд count is zerothen

x .phase ← r ecover inд; send r ecover message to
Γout (x );

else
x .phase ← buildinд; send build message to Γout (x );

if x is an init iator ∧ x .phase == r ecover inд ∧ x received a
r eturn message from all the nodes in Γout (x ) ∧ stronд count is
zerothen

send r eclaim message to Γout (x );
if x is not an init iator ∧ x receives a r eclaim messagethen

decrement the phantom count;
if x has no incoming stronд edgethen

send r eclaim message to Γout (x );

if all phantom, stronд, weak counts are zero ∧ x is not waiting for
any r eturn messagethen

reclaim x ;
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w will be considered to be phantom edges, i.e. neither strong
nor weak but a transient and indeterminate state. If a node,
u, in Γout (w ) loses its last strong edge as a result of receiving
a phantomize message, u also becomes phantom node, but
not an initiator. Phantomization will thus mark all nodes in
the dependent set. In addition, all the nodes in the affected
set will receive phantomize messages.
Since the algorithm proceeds in phases, we need to wait

for phantomization to complete before recovery or building
can begin. For this reason, for every phantomize message
sent from a node, x , to a node, y, a return message must
be received by x from y . If y does not phantomize as a
result of receiving the message from x , the return message
is sent back to x immediately. If the phantomize message
causes y to phantomize, then y waits until it has received
return back from all nodes in Γout (y) before replying to x
with a return message. For this purpose, each phantom node
maintains a single backward-pointing edge and a counter to
track the number of return messages it is waiting for. While
y is waiting for returnmessages, it is said to be phantomizing.
Once all return messages are received, the phantom node is
said to be phantomized.
Phantomization is, therefore, essentially, a breadth-first

search rooted at the initiator. The traversal contains two
steps. In the forward step, messages originate from the initia-
tor and propagate to the affected nodes. After they reach all
the affected nodes, returnmessages will propagate backward
to the initiator. The reverse step is a simple termination de-
tection process which uses a spanning tree in the subgraph
comprised of the affected nodes (i.e., the single backward-
pointing edge forms the spanning tree).
The outgoing edges of any phantom node are said to be

phantom edges. Each node has a counter for its incoming
phantom edges (in addition to its strong and weak counters).
Every node in the affected subgraphwill have a positive phan-
tom count at the end of the phantomization phase. When
phantomization is complete, the initiator then enters into
the correction phase.

3.2 Correction Phase
When phantomization is complete, the initiator starts either
the recovery or building phase depending on the build set.

If the build set is not empty, the initiator enters the build
phase. In the build phase, the affected subgraph is traversed,
phantom edges are converted to strong and weak edges, and
the weights of the nodes are adjusted.
If the build set is empty, the initiator enters the recovery

phase. In the recovery phase, the affected subgraph is traced
until the recovery set is found (i.e. phantom nodes that have
strong incoming edges). If and when this set is found, the
build phase begins from the nodes in the recovery set. If
the recovery is empty, then the initiator will reclaim all the
purely dependent nodes.

Both build and recovery phases make use of wait counts,
return messages, and the backward pointing edge in the
same manner as phantomization.

Build Phase: If the initiator has any strong incoming edges
after the phantomization phase, then the build set is not
empty. In response, the initiator updates its phase to building
and sends build messages to its out-neighbors.
If a node, y, sends a build message to a node, x , that is

phantom node, themax-weight of x is set to the weight of y
(x .max-weight ← y.weiдht ), and the weight of x is set to the
weight of y plus one (x .weiдht ← y.weiдht + 1). The node x
then decrements the phantom count, increments the strong
count, and propagates the build message to its out-neighbors.
If a node, y, sends a build message to a node, x , that is

not phantom node, it builds the edge, i.e. it updates the
max-weight of x if necessary, decrements the phantom count
and increments either the strong or the weak count, depend-
ing on its weight.
After a node, x , builds its last phantom edge and replies

to its parent in the spanning tree with return, the node x is
then returned to a healthy state.

Lemma 2 (Dependent Phantomizes). During phantomiza-
tion, only the dependent set phantomizes.

Proof. We only consider situations where I loses its last
strong edge but still has incoming weak edges, as other cases
are trivial. By definition, phantomization converts the out-
going edges of I to phantom edges. Since this takes away
the last strong edge of all nodes in the dependent set, these
nodes and their outgoing edges also phantomize. Since nodes
outside the dependent set have strong paths from the root,
they do not phantomize. □

Lemma 3 (Not Phantomized). After phantomization, nodes
in the build set are not phantom nodes.

Proof. By Lemma 2, since the build set has no intersection
with the dependent set, it does not phantomize. □

Lemma 4 (Phantomized). After phantomization, nodes in
the recovery set are phantom nodes.

Proof. By Lemma 2, since the recovery set is a subset of the
dependent set, it will phantomize. □

Lemma 5 (Build set). After phantomization, if the initiator
has strong incoming edges, then the initiator is not empty.

Proof. From Lemma 3, we know that nodes in the build set
can keep the initiator, I , alive. When the initiator became
a phantom node, it converted its weak incoming edges to
strong. However, since nodes in the recovery set all became
phantom nodes by Lemma 4, they will not contribute strong
support to the initiator. Since nodes in the build set do not
phantomize by Lemma 3, the edges connecting them to the
initiator remain strong. □
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Lemma 6 (Recovery set). After phantomization, if a phan-
tom node contains at least one strong incoming edge, it belongs
to the recovery set.

Proof. Every node in the recovery set will phantomize by
Lemma 4. Also, every node in the recovery set has a non-
strong path from R prior to phantomization. Phantomization,
however, will cause the nodes to toggle, converting the non-
strong path from R to a strong path for at least one node in
the recovery set. Therefore, the recovery set will contain at
least one node with at least one strong incoming edge.

□

Lemma 7 (Non Empty Recovery Set). After phantomization,
if the recovery set is not empty, then the initiator is not dead.

Proof. The recovery set is an intersection of dependent set
and supporting set. Since the dependent set’s strong paths
come from the initiator, it is phantomized by the phantomiza-
tion process. When a node is a member of the supporting set
and the dependent set, it means that node has an alternative
path from root to node that does include the initiator. That al-
ternative path will become strong after phantomization. □

Recovery Phase: If the initiator has no strong edges after
the phantomization phase, then the build set is empty and it
updates its phase to recovering and sends recover messages
to its out-neighbors.
When a node receives a recover message and its strong

count is zero, it simply updates its state to recovering and
propagates the recovery message to out-neighbors. If, instead,
it has a positive strong count, it propogates build to its
out-neighbors .

Note that it is possible for a build message to reach a node,
x , that is still in the forward step of the recovery process. To
accommodate this, when x receives all its return messages
back from Γout (x ), x checks to see if it now belongs to the
recovery set (i.e., if it has positive strong count). If it still
does not belong to the recovery set, then the return message
is sent back to the parent as usual. If it has a positive strong
count, the node starts the build process. Once the phantom
count is zero, the strong count is positive, and the node is
no longer waiting for return messages, it is marked healthy.

Reclaim Phase: If the recovery phase finishes and the ini-
tiator, x , still has no incoming strong edge, it issues plague
messages to Γout (x ). As the name suggests, this message is
contagious and deadly. Any node receiving it decrements its
phantom count by one and (if the recipient has no incoming
strong edges) it sends the plague message along its outgoing
edges.

Once a node has no edges (i.e. phantom, strong, and weak
count are zero) and is no longer waiting for return messages,
it is reclaimed. Unlike the other phases, return messages and
wait counts are not used in plague messages.

Lemma 8 (Time Complexity). SWPR-1 finishes in
O (Rad (i,Ga )) time, whereGa is the graph induced by affected
nodes, where i is the initiator, and Rad (i,Ga ) is the radius of
the graph from i .

Proof. In each time step, phantomization spreads to the
out-neighbors of the previously affected nodes, increasing the
radius of the graph of phantom nodes by 1. In O(Rad(i,Ga ))
time, all the nodes inGa receive a phantomize message, since
all the nodes in Ga are at distance less than or equal to
Rad(i,Ga ) from i. In the reverse step, the same argument
can be applied backward. So phantomization completes in
O(Rad(i,Ga ) time.

Note that this calculation is an ideal bound as it assumes
there are more computational units than nodes.

In the correction phase, during the forward step, in r time,
r neighborhoods of i received recovery or build or plague
message, until the affected subgraph is traversed. In the
reverse step of build or recovery, however, a return message
might initiate the build process. While the build process
nodes send return messages, the nodes will become healthy
thereby reducing the Rad(i,Ga ). So in the worst case, all nodes
that received recovery might build. Because each node will
have only one parent, the return step cannot take more than
O(Rad(i, Ga ) time. □

Corollary 1. SWPR-1 finishes inO (Ea ) time, since Rad(i,Ga )
can be O(Ea).

Lemma 9 (Communication Complexity). SWPR-1 sends
O(Ea ) messages, where Ea is the number of edges in the graph
induced by affected nodes.

Proof. In the forward step of the phantomization, all the
nodes in the dependent set send the phantomize message to
their out-neighbors, and each node can do this at most once
(after which the phantom node flag is set). So the forward
step of the algorithm uses only O(Ea ) messages. In the re-
verse step, the return messages are sent backward along the
edges of the spanning tree. So the reverse step sends O(Va )
messages, where Va is the number of nodes in the affected
subgraph. So Phantomization uses O(Ea ) messages.

In the forward step of the recovery/build, either a recovery
message, a build message, or both traverses every edge, so
the forward step of the algorithm uses O(Ea ) messages. In
the reverse step of the algorithm, the return messages are
sent back to the parent a maximum of two times (once for
recovery, once for build), traversing a subset of the edges in
the reverse direction. In every forward step of the plague, all
outgoing edges are consumed, and therefore it takes O(Ea )
messages. □

Lemma 10 (Message Size Complexity). SWPR-1 sends mes-
sages of O (log(n)) size, where n is the total number of nodes
in the graph.
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Proof. The messages have to hold a value at least as large as
the count of nodes in the system which are O(log(n)) size.
Apart from the ids, the message also contains the weight of
node which is also of size O(log(n)). In the return message,
our algorithm only uses the id of the sender and receiver. So
all the messages in the SWPR-1 are of O(log(n)) size. □

Theorem 11. All dead nodes will be reclaimed at the end of
the correction phases.

Proof. Assume a node y, is a dead node, but flagged as live
node by the correction phase. If y becomes live, then it must
have done so because its edges were rebuilt during building.
If so, then either y has a strong count, or there exists a node
x with a strong count which also has a path to y. However,
any node with a strong count at the end of phantomization
is a live node by Lemma 5 and Lemma 6, and because a
path from x to y exists, x is also live. This contradicts our
assumption. □

Theorem 12. No live node will be reclaimed at the end of the
correction phases.

Proof. Assume a node, x is live, but it is reclaimed. If x is the
initiator and is live then the supporting set is not empty. If
the build set isn’t empty, then x will have a strong count, so it
won’t be reclaimed. If the build set is empty and the recovery
set is non-empty, then correction will build a strong edge to
x , so it won’t be reclaimed. This contradicts our assumption.
Now assume x is dead, but it causes some other node to be
reclaimed. If x is dead, then the supporting set is empty and
the purely dependent set is dead. The independent set has
a strong count before the collection process, so it won’t be
reclaimed. The nodes in the dependent set that had a non-
strong path from R before phantomization, will have a strong
path from R after toggling and recovery/build, so they will
not be reclaimed. This also contradicts our assumption. □

4 Multi-Collector Algorithm (SWPR)
We now discuss the case where mutations inG are not seri-
alized and the Mutator is allowed to create and delete edges
in G during the collection process. As a consequence, mul-
tiple edge deletions might create collection processes with
overlapping (induced) subgraphs, possibly trying to perform
different phases of the algorithm at the same time.

To break the symmetry among multiple collectors, we as-
sign unique identifiers to each one. The collection identifier
(CID) is a tuple consisting of three numbers, a major id, an
object id (which uniquely identifies an object), and aminor id
(Imajor , Iob ject , Iminor ). Tuples are ordered in a lexicograph-
ical order first by major id, then if major id’s are the same,
object id’s, then if both major and object id’s are the same,
they are ordered by minor id. Initially, both the major and
minor id are zero.

In addition, to help a node keep track of what phase it
should be in, nodes remember the message which caused
their backward-pointing edge (i.e. parent edge) to be set.

Appendix A contains the detailed pseudocode of the multi-
collector algorithm.

Definition 2 (Isolation). A collection process is said to pro-
ceed in isolation if either (1) the affected subgraph does not
mutate, or (2) mutations to the affected subgraph occur, but
they do not affect the decisions of the initiator to reclaim or
build, and do not affect the decisions of the recovery set to build
by the correction phases.

If there are two ormore (collection) processes acting on the
same shared subgraph, the collection process with the higher
id (higher priority) will acquire ownership of the nodes (of
the shared subgraph) upon receipt of a phantomize message.
As a consequence, any initiator node which receives a phan-
tomize message from a higher priority collection marks itself
with the higher id and loses its status as an initiator.

In addition, we have a new type of message called the
claim message which, like phantomize, takes ownership of
the nodes it touches. If a node that is already phantomized
receives a phantomize or claim message from a higher pri-
ority collection, that node sends a claim message, to Γout .
The claim message propagates through the tree in the same
manner as phantomize, recover, and build, by waiting for re-
turn messages and sending a return back to the parent once
all of them have been received. The claim message ensures
that the reachable subgraph is under the management of the
higher priority collection process.

Collection Process Graph: The set of nodes marked by a
CID is called a collection process. Each collection process can
be represented as a single node, and the set of collection
process nodes eventually forms a directed acyclic graph.

Lemma 13. The collection process graph is eventually acyclic.

Proof. If a cycle exists between two process graphs, A and B,
then recovery or build messages must eventually propagate
from one to the other. Without loss of generality, assume
A has higher priority than B. During the correction phases,
messages propagate along all phantom edges, and in the
process take ownership of any nodes they touch. Eventually,
therefore, there should be no edges from A to B. □

Recovery Count: The recovery count tracks the number of
recovery messages each node receives from its own collection
process. Thus, a recovery edge is also a phantom edge, and
a phantom edge will be converted to a recovery edge when
a recover message is sent for that edge with the same CID.
The recovery edge is the fourth edge type in the algorithm.
The recovery count maintained on each node is stored in a
variable named RCC.
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A recovering node can neither send the return message
to its parent nor start reclaiming until the recovery count is
equal to the phantom count.
The following scenario illustrates the purpose of the re-

covery count. Consider the configuration of nodes in Fig. 4.
Initially, we have root edges connected to both N6 and N1
and after these paths are reclaimed we have two collection
processes.

Assume that these two collection processes have relative
priority I6 > I1, and I6 begins its recovery phase after the
edge N2 → N4 is phantomized. Process I6 should identify
node N4 as belonging to the recovery set, but if process I1 has
not completed recovering and building, it will not. Therefore,
without the requirement that the recovery count equal the
phantom count, the recovery phase for I6 will complete and
prematurely reclaim N6. With the requirement, I6 will stall
until N2 → N4 is rebuilt. Once that is done, I6 will rebuild
N4 → N5 and N5 → N6. Return messages will then be sent
until they get back to N6, and finally N6 → N4 will rebuild.

The effect of the recovery count requirement, therefore, is
to ensure that the higher priority process makes its decision
in isolation from the lower priority process. Thus, the higher
priority processes will wait until either the lower priority
processes is claimed by the higher one (if both are part of the
same cycle), or until the lower priority process completes (if
there is no path from the higher prioirity process to the the
lower priority process).

Note that the recovery count also affects plague messages.
These messages will not propagate unless the node receiving
them has an equal recovery and phantom count.

We assumed in the discussion above that I6 has higher pri-
ority than I1. If the priority were reversed, I1 would take over
building node N4, but this introduces additional complexity
which we will now address.

Lemma 14. If an entity A precedes an entity B topologically
in the collection process graph, andA has a lower priority than
B, entityAwill complete before entity B and both will complete
in isolation.

Proof. Consider a node, x , that has incoming edges from both
A and B. Process B will have ownership of the node during
the recovery or build phase, but until the edges from A are
either built or deleted, x will have a recovery count (i.e. RCC)
equal to the number of edges from B, and a phantom count
(i.e. PC) equal to the sum of the edges from A + B. So the
recovery or build phase of B must take place after A, and so
B will operate in isolation. Since there are no edges from B
to A, and since B is not making progress, B does not affect A,
and A is in isolation. □

Recovery Transactions: Recovery transactions are a mech-
anism to restart the recovery in certain special circumstances.
Consider a recover message,m, arriving at node N4 from N2
(Fig. 4). This time, assume that the collection id of I1 is higher

ID:N1
PC:1
RCC:0
CID:I1

ID:N2
PC:1
RCC:1
CID:I1

ID:N3
PC:1
RCC:1
CID:I1

ID:N4
PC:2
RCC:1
CID:I6

ID:N5
PC:1
RCC:1
CID:I6

ID:N6
PC:1
RCC:1
CID:I6

Figure 4.We depict two collection processes in the recovery
phase. Each circle is a node. Node properties are: node id
(ID), phantom count (PC), recovery count (RCC), collection
id (CID). Bold borders denote initiators, and dot and dashed
edges denote phantom edges.

than I6. If N4 is in the recovered state, the collection id on x
is updated with the collection id inm (x .CID ←m.CID). If,
however, x is recovering, i.e. it is waiting for returnmessages
from its out-neighbors, a return message, r , is immediately
sent to N4’s parent, and N4’s parent is set to point to N2. In
addition, a value called the start-over CID or SOC on x is
set and propagated by return messages until it reaches the
initiator. The SOC will cause recovery to restart on x once
the recovery operation completes. The new recovery phase,
however, will have incremented its minor id (the last number
in the tuple) by 1.

In the example, the SOC propagates back to N6, where the
recovery count will be reset and the entire recovery phase
will start over, but with collection id I ′6. Note that while I ′6
is higher than I6, it is still lower than I1. The higher priority
(signified by the prime) doesn’t change the relative priority
of the collection process to the other independent collection
processes because it only increments the minor id. After this
change, the new recovery phase will not proceed until the
phantom count is equal to the recovery count (PC = RCC).
Since this cannot succeed, I ′6 stalls until I1 takes over the
entire graph.

This restarted recovery triggered by the SOC is similar to
the rollback of a transactional system and hence the name.

Handling the actions of The Mutator: Creation of edges
and nodes by the Mutator poses no difficulty. If an edge is
created that originates on a phantomized node, the edge is
created as a phantom edge. If a new node, x , is created, and
the first edge to the node comes from a node, y, then x is
created in the same state as y (e.g., phantomized, recovered,
etc.).
If, however, the Mutator deletes a phantom edge x → y

from collection x1 and Γin (y) is not empty, it is not enough to
reduce the phantom count on y by 1. In this case, y is made
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the initiator for a new collection process, y2, such that y2
has higher priority than x1 (we increment the major id on
the tuple). If y is in the recovering state (i.e., it is waiting for
recover messages to return), it sends return with SRO = true ,
and re-recovers y.

Lemma 15. If an entity A precedes an entity B in the collec-
tion process graphC with respect to a topological ordering and
A has higher priority than B, entity A will take ownership of
entity B, and A will proceed in isolation.

Proof. Because A has higher priority, it takes ownership of
every node it touches and is thus unaware of B. So it proceeds
in isolation. If B loses ownership of a recovered node, it will
not affect isolation because a recovered node has received
recovery messages on all its incoming edges (RCC = PC), and
has already sent its return. If B loses a node that is building
or recovering, B is forced to start over. In the new recovery
or build phase, B will precede A in the topological order, and
both will proceed in isolation. □

Theorem 16. All collection processes will complete in isola-
tion.

Proof. By Lemma 13 we know that the collection process
graph will eventually be topologically ordered, and the or-
dering will not violate isolation given by Lemma 15. Once
ordered, the collection processes will then complete in order
proven by Lemma 14. □

Corollary 17. In a quiescent state (i.e. one in which the Mu-
tator takes no further actions on Ga), with p active collection
processes, our algorithm finishes in O (Radall ) time where Ga
is the affected subgraphs of all connected collection process and
Radall is the sum of the radii of the affected subgraphs of all p
initiators.

Lemma 18 (Creation Isolation). Creation of edges and nodes
by the Mutator does not violate isolation.

Proof. The addition of edges cannot affect the isolation of a
graph because (1) addition of an edge cannot cause anything
to become dead and (2) if an edge is created to or from any
edge in a collection process, then the process was already
live by Axiom 1. □

Lemma 19 (Deletion Isolation). Edge deletion by theMutator
does not violate isolation.

Proof. When theMutator removes an edgex → y from inside
a collection process graph, a new, higher collection process
is created and it is given ownership of y. By Theorem 16, the
old and new collection process will proceed in isolation. □

Theorem 20 (Liveness). Eventually, all dead nodes will be
reclaimed.

Proof. By Axiom 1, we know the Mutator cannot create or
delete any edges to dead nodes. Theorem 11 proves that if a

collection process works in isolation, all dead nodes will be
reclaimed. Lemma 16 proves that indeed all collection pro-
cesses complete in isolation. Theorem 11 proves all collection
processes in isolation reclaim dead nodes. Thus, eventually,
all dead nodes will be reclaimed. □

Theorem 21 (Safety). No live node will be reclaimed.

Proof. Lemma 12 proves that if a collection process works
in isolation, no live nodes of G will be reclaimed. Lemma 16
proves that when multiple collection processes working on
the same graph proceed in isolation. Lemma 18 proves that
creation of edges does not violate isolation. Likewise, Lemma
19 proves that the deletion of an edge in the does not affect
isolation. □

5 Testing
The algorithm presented in this paper was tested using a sim-
ulator created in Java. The simulator puts all messages into a
common queue, then withdraws them one-at-a-time in ran-
dom order for execution. We call this “random” mode. This
simulates a distributed parallel system with highly varying
message delivery times. Alternatively, we used a “CONGEST
mode” in which each object with a pending message executes
within a simulated time step or round.

In either case, because the system is actually executing
in a random sequence, we can replay any problems created
by pathological message arrival times by simply starting the
simulation with the same seed.
Using this framework, we ran hundreds of thousands of

simulations with as many as a million concurrent collection
processes. Initial configurations included doubly linked lists,
highly connected graphs (including cliques), random graphs,
and regular square grids of nodes. These graphs, initially, had
root edges connecting to all the nodes and weak edges be-
tween the nodes. Once the graph was complete, we removed
all root nodes and let garbage collection begin at every node
simultaneously.

We summarize the empirical results of these experiments
below. Additionally, we provide plots with error bars (rep-
resenting standard deviations) for the cases listed below. In
all of what follows, N represents the number of edges in the
network.

1. The doubly linked list ∝ 6.06 log(N )1/3N messages
and ∝ 3.9N rounds to complete. The reason for the
relatively poor performance in terms of rounds is ex-
plained by the low connectivity of the network.

2. The best performingwere the highly connected graphs.
In this case, the number of messages was ≈ 7.73N , and
the number of rounds was ≈ 17.22. This is explained
by the fact that highly connected networks rapidly
eliminate competing collections and the single, high-
est priorty collection can proceed with nearly perfect
parallelization.
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3. The grid required approximately ≈ 4.79 log(N )1/2N
messages and ∝ 10.14N 4/9 rounds to complete

In general, the more connected the dependent graph is,
the easier the messages can flow, and the faster (in terms of

rounds) the algorithm can proceed toward a state with no
phantom edges/nodes.

The test simulator is publicly available at
https://github.com/stevenrbrandt/
DistributedGarbageCollectorSimulator.git

https://github.com/stevenrbrandt/DistributedGarbageCollectorSimulator.git
https://github.com/stevenrbrandt/DistributedGarbageCollectorSimulator.git


ISMM’18, June 18, 2018, Philadelphia, PA, USA H. Krishnan, S. R. Brandt, C. Busch, G. Sharma

6 Conclusions
We have described a hybrid reference counting algorithm
for garbage collection in distributed systems. The algorithm
improves on the previous efforts by eliminating the need
for centralization, global barriers, back references for every
edge, and object migration. Moreover, it achieves efficient
time and space complexity. Furthermore, the algorithm is
stable against concurrent mutations in the reference graph.

We have described a test framework used to verify the cor-
rectness of the algorithm and summarized the performance
of the algorithm under various scenarios.
We believe that our techniques might be of independent

interest in solving other fundamental problems that arise in
distributed computing.
In future work, we hope to address how to provide an

order in which the dead nodes will be cleaned up, permitting
some kind of “destructor” to be run, and to address fault
tolerance. In addition, we hope to implement the proposed
algorithm in the HPX framework [11].

A Algorithms
Required variables on each node:

1. integers: object id, strong count, weak count, phantom
count, rcc, wait count, weight, max weight

2. three int tuples: cid, recover cid, start over cid
3. enum with members healthy, phantom, recover, build,

infected, dead: state, recv
4. object pointers: parent
5. boolean: incrRCC

Procedure OnEdgeCreation(sender weight,is phantom edge,sender cid):

if is phantom edgethen
if cd = NULLthen

cd = new CollectionData(sender cid)
cd.parent = sender

Increment cd.phantom count
if cd.phantom count = 0 and cd.rcc = 0then

cd = NULL

else if sender weight < weightthen
Increment strong count

else
Increment weak count

if sender weight > max weightthen
max weight = sender weight

Procedure OnEdgeDeletion(sender,sender weight,is phantom edge,sender cid):

if phantom flagthen
if cd = NULLthen

cd = new CollectionData(sender cid)
Decrement cd.phantom count
if sender cid.equals(cd.cid)then

Decrement cd.rcc

else if sender weight < weightthen
Decrement strong count

else
Decrement weak count

if cd = NULLthen
if strong count > 0then

return
else if weak count > 0then

if has no outgoing edges()then
toggle()

else
cd = new CollectionData(id)
toggle()
PhantomizeAll(sender)

else
delete outgoing edges(NULL)
cd = new CollectionData(id)
cd.state = DEAD

else
return to parent force()
cd.cid = new CID(cd.cid.majorId + 1, id, 0)
cd.parent = 0
if cd.wait count = 0then

action(sender)

Procedure Toggle():

if weak count > 0 and strong count = 0then
strong count = weak count
weak count = 0
weight = max weight + 1

Procedure Phantomize(sender,sender cid):

if w < weightthen
Decrement strong count

else
Decrement weak count

do action = cidCheck(sender, sender cid)
if parent was setthen

cd.recv = PHANTOM
Increment cd.phantom count
if do actionthen

if not is initiator()then
action(sender)

return to sender(sender)
if cd.phantom count = 0 and strong count = 0 and weak count = 0 and cd.wait
count = 0then

delete outgoing edges(NULL)
cd.state = DEAD
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Procedure PhantomizeAll(sender weight,is phantom edge,sender cid):

if phantom flag()then
ClaimAll()
return

cd.state = PHANTOM
for each edgedo

Send Message Phantomize→ edge
Increment cd.wait count

if cd.wait count = 0then
cd.state = HEALTHY
return to parent()
if strong count > 0 and cd.phantom count = 0 and cd.rcc = 0then

return to sender(sender)
cd = NULL

else
cd.incrRCC = FALSE

else
cd.incrRCC = FALSE

Procedure Claim(sender,sender cid):

do action = cidCheck(sender, sender cid)
if parent was setthen

cd.recv = PHANTOM
if do actionthen

if not is initiator()then
action(sender)

return to sender(sender)

Procedure ClaimAll():

cd.state = PHANTOM
for each edgedo

Send Message Claim→ edge
Increment cd.wait count

if cd.wait count = 0then
return to parent()

cd.incrRCC = FALSE

Procedure Recover(sender cid,sender,incrRCC,mandate):

incr = cd.cid < sender cid
do action = cidCheck(sender, sender cid)
if parent was setthen

cd.recv = RECOVER
if incrRCC and sender cid = cd.cid and cd.phantom count > 0then

Increment cd.rcc
if do actionthen

cd.incrRCC = FALSE
if not is initiator()then

action(sender)

return to sender(sender)

Procedure RecoverAll():

if cd.incrRCCthen
ClaimAll()
return

incrRCC = not (cd.recoverCid = cd.cid)
cd.state = RECOVER
cd.recoverCid = cd.cid
for each edgedo

Increment cd.wait count
Send Message Recover→ edge

cd.incrRCC = FALSE
if ready()then

return to parent()

Procedure Build(sender weight,sender cid,sender,decrRCC,mandate):

if cd , NULL and phantom flag() and strong count = 0 and weak count = 0then
weight = sender weight + 1
max weight = sender weight

if sender weight < weightthen
Increment strong count

else
Increment weak count

if sender weight > max weightthen
max weight = sender weight

Decrement cd.phantom count
do action = cidCheck(sender, sender cid)
if parent was setthen

cd.recv = BUILD
if in collection message and decrRCCthen

Decrement cd.rcc
if ready() and cd.parent ≥ 0then

action(sender)
return to sender(sender)
return

if do actionthen
if not is initiator()then

action(sender)

return to sender(sender)

Procedure BuildAll(sender):

if not phantom flag()then
if not is initiator()then

return to parent()
return

decrRCC = cd.recoverCid = cd.cid
cd.recoverCid = NULL
cd.state = BUILD
for each edgedo

Increment cd.wait count
Send Message Build→ edge

cd.incrRCC = FALSE
if ready()then

return to parent()
return to sender(sender)
cd = NULL
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Procedure plague(sender,sender cid):

Decrement cd.phantom count
if sender cid = cd.cidthen

Decrement cd.rcc
if cd.phantom count = cd.rcc and cd.wait count = 0then

if strong count = 0 and weak count = 0then
InfectAll()
return

else if cd.phantom count = 0then
cd = NULL

Procedure InfectAll():

for each edge
Send Message Plague→ edge
set edge to NULL
edges.clear()
if strong count = 0 and weak count = 0 and cd.phantom count = 0 and cd.wait
count = 0then

cd.state = DEAD
else

cd.state = INFECTED

Procedure Return(start over cid):

Decrement cd.wait count
if start over cid , NULLthen

if cd.start over = NULL or cd.start over < start over cidthen
cd.start over = start over cid

if is initiator() and start over cid = cd.cidthen
mycid = cd.cid
cd.cid = new CID(mycid.majorId, mycid.objId, mycid.minorId + 1)

if cd.wait count = 0then
if start over cid , NULL and is initiator()then

if not start over cid = cd.cidthen
start over cid = NULL

c = cd.cid
cd.cid = new CID(c.majorId, c.objId, c.minorId + 1)
if cd.phantom count = 0 and strong count > 0 and ready()then

if phantom flag()then
BuildAll(-1)

else
return to sender(-1)
cd = NULL

else if phantom flag()then
RecoverAll()

else if strong count > 0then
BuildAll(-1)

else
toggle()
PhantomizeAll(-1)

else
action(-1)

else
mycid = cd.cid
if mycid = start over cidthen

if is initiator()then
cd.cid = new CID(mycid.majorId, mycid.objId, mycid.minorId
+ 1)
cd.parent = 0
if cd.wait count = 0then

action(-1)

Procedure cidCheck():

if cd = NULLthen
if sender cid = NULLthen

sender cid = new CID(0, this.id, 0)
cd = new CollectionData(sender cid)
cd.parent = sender
parent was set = TRUE

else if sender = 0then
pass

else if sender cid = cd.cidthen
in collection message = TRUE
if cd.wait count > 0then

return FALSE
if cd.parent < 0then

cd.parent = sender
parent was set = TRUE

else if sender cid < cd.cidthen
return FALSE

else if cd.wait count > 0then
if not is initiator()then

return to parent force(cd.cid)
cd.parent = sender
parent was set = TRUE
cd.cid = sender cid
cd.start over = NULL
if cd.state = RECOVERthen

cd.state = PHANTOM
return FALSE

else if cd.cid < sender cidthen
if cd.parent > 0then

return to parent force(cd.cid)
else

cd.start over = NULL
cd.parent = sender
parent was set = TRUE
cd.cid = sender cid

return TRUE

Procedure Ready(sender weight,is phantom edge,sender cid):

if cd = NULLthen
return TRUE

if cd.wait count > 0then
return FALSE

if cd.rcc < cd.phantom countthen
if is initiator()then

if cd.state = RECOVER or BUILDthen
return FALSE

else if cd.recv = RECOVER or BUILDthen
return FALSE

return TRUE
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Procedure actionInitiator(sender):

if ready()then
if cd.state = HEALTHY then

if not phantom flag() and old weight < weight or strong count =
0then

PhantomizeAll(sender)

else if cd.state = PHANTOMthen
if strong count > 0then

BuildAll(sender)
else if has no outgoing edges() and weak count = 0 and cd.phantom
count = 0then

cd.state = DEAD
else if weak count = 0then

RecoverAll()

else if cd.state = RECOVERthen
if strong count = 0then

InfectAll()
else

BuildAll(sender)

else if cd.state = INFECTEDthen
if cd.phantom count = 0 and strong count = 0 and weak count =
0then

cd.state = DEAD

else if cd.phantom count = 0then
return to sender(sender)
if strong count = 0 and weak count = 0then

PhantomizeAll(sender)
else

cd = NULL

else if phantom flag()then
if cd.incrRCCthen

ClaimAll()

else if strong count = 0then
PhantomizeAll(sender)

else if not phantom flag()then
if strong count = 0then

PhantomizeAll(sender)
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