
A Highly Scalable Graph Clustering Library based on
Parallel Union-Find

Karthik Senthil

Parallel Programming Laboratory
University of Illinois at Urbana-Champaign

12 April 2018

16th Annual Workshop on Charm++ and its Applications 2018

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 1 / 22

Problem Statement

Graph clustering or connectivity is the process of detecting connected
components in a given graph

Connected component : Maximal-size subgraph where a path exists
between every pair of vertices in the subgraph

Figure 1: Connected components in a graph

Two schools of algorithms :

Graph traversal algorithm

Union-Find based algorithm

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 2 / 22

Outline

1 Related Work

2 Parallel Union-Find in Charm++

3 Path Compression

4 Implementation

5 Performance Evaluation

6 What’s In Store

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 3 / 22

Outline

1 Related Work

2 Parallel Union-Find in Charm++

3 Path Compression

4 Implementation

5 Performance Evaluation

6 What’s In Store

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 3 / 22

Related Work

Connectivity in a graph is a well-studied problem

Shiloach, Yossi, and Uzi Vishkin. “An O (logn) parallel connectivity algorithm.”
Journal of Algorithms 3.1 (1982): 57-67.

Nassimi, David, and Sartaj Sahni. “Finding connected components and connected
ones on a mesh-connected parallel computer.” SIAM Journal on computing 9.4
(1980): 744-757.

Krishnamurthy, A., Lumetta, S., Culler, D. E., & Yelick, K. (1997). “Connected
components on distributed memory machines”. Third DIMACS Implementation
Challenge, 30, 1-21.

Manne, Fredrik, and Md Patwary. “A scalable parallel union-find algorithm for
distributed memory computers.” Parallel Processing and Applied Mathematics
(2010): 186-195.

Our motivation : A scalable parallel implementation using union-find data
structures in a distributed asynchronous environment

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 4 / 22

Outline

1 Related Work

2 Parallel Union-Find in Charm++

3 Path Compression

4 Implementation

5 Performance Evaluation

6 What’s In Store

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 4 / 22

Algorithm

Given a graph G = (V ,E), with n = |V | and m = |E |
An edge e = (v1, v2) represents a union operation

Our algorithm:

1 Message v1 for the operation find(v1)

2 v1 messages parents till boss1 = find(v1)

3 boss1 messages v2 for operation find(v2) and carries info of boss1
4 When boss2 = find(v2), align parent pointers of bosses

Effectively we are constructing a forest of inverted trees; each tree is a unique
connected component

Root of a tree (boss) = Representative of the component

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 5 / 22

Algorithm

Figure 2: Asynchronous union-find algorithm

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 6 / 22

Solving Race Conditions

An example scenario

Enforce a strict ordering in the union operation based on vertex ID

Brings in an additional min-heap like property to the inverted trees

ID of a parent node is always lesser than IDs of its children
A possible cycle edge can be detected if a node with lower ID is asked
to point to node with higher ID

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 7 / 22

High Level Pseudo-Code

union_request(v1, v2) {

if (v1.ID > v2.ID)

union_request(v2, v1)
else

find_boss1(v1, v2)
}

Listing 1: union request

find_boss1(v1, v2) {

if (v1.parent == -1)

find_boss2(v2, boss1)
else

find_boss1(v1.parent, v2)
}

Listing 2: find boss1

find_boss2(v2, boss1) {

if (v2.parent == -1) {

if (boss1.ID > v2.ID)

union_request(v2, boss1)
else

v2.parent = boss1
}

else

find_boss2(v2.parent, boss1)
}

Listing 3: find boss2

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 8 / 22

Outline

1 Related Work

2 Parallel Union-Find in Charm++

3 Path Compression

4 Implementation

5 Performance Evaluation

6 What’s In Store

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 8 / 22

Local Path Compression

Make the local subtree constructed in every chare completely shallow
i.e. rooted star

During Find, if next parent on current path is on a different chare
then sequentially update parent pointer for all nodes on path

Increases amount of sequential work per chare but greatly boosts
speed of future Find operations

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 9 / 22

Global Path Compression

Pointer jumping operation to grandparent

Short circuits paths that are spanning across multiple chares

Increases communication due to more messages, but overhead is
reduced by aggregating messages using TRAM

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 10 / 22

Outline

1 Related Work

2 Parallel Union-Find in Charm++

3 Path Compression

4 Implementation

5 Performance Evaluation

6 What’s In Store

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 10 / 22

Library Design

Library designed using bound-array concept

Connected components detection

Phase 1 : Build the forest of inverted trees using our asynchronous
union-find algorithm
Phase 2 : Identify the bosses of each component and label all vertices
in that component
Phase 3 : Prune out insignificant components

Used TRAM to aggregate all messages in Phase 1 and Phase 2

Tested and verified with protein structures from RCSB PDB

Large scale testing with synthetic and real-world graphs

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 11 / 22

Phase 3 - Discussion

Perform a global reduction to gather membership statistics for each
component from all the chares
Initially implemented using a custom reducer with each chare
contributing an std::map

Reduced final map is broadcast and rebuilt on each PE (using a
group)

Figure 3: Overheads in map-based reducers for Phase 3

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 12 / 22

Library Design - Updated

Phase 1 : Build the forest of inverted trees using our asynchronous
union-find algorithm

Phase 2 :

(a) Parallel prefix scan to get total boss count and relabel all bosses with
sequential identifiers

(b) Identify the bosses of each component and label all vertices in that
component

Phase 3 : Prune out insignificant components

Use fixed size array based reduction for the counts
Arrays can be sparse, but this implementation is very scalable and has
minimal overhead

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 13 / 22

Outline

1 Related Work

2 Parallel Union-Find in Charm++

3 Path Compression

4 Implementation

5 Performance Evaluation

6 What’s In Store

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 13 / 22

Experiments

Experiments performed:
1 Phase runtime evaluation

Mesh configurations : 10242 (1M), 20482 (4M), 40962 (16M),
81922 (64M)
Probabilities : 2D40, 2D60, 2D80
Problem size per chare fixed at : 128x128 mesh piece

2 Strong scaling performance

Mesh configuration : 81922 (64M), 163842 (256M), 2D60
Number of cores : 64, 256, 1024, 4096

3 Real world graphs

com-Orkut : 3M vertices, 117M edges
com-Amazon : 330K vertices, 925K edges

All experiments were performed on the Blue Waters (Cray XE)
supercomputer maintained by NCSA.

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 14 / 22

Results - Phase Runtime

Figure 4: Mesh size 1024x1024 on 64 cores

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 15 / 22

Results - Phase Runtime

Figure 5: Mesh size 8192x8192 on 4096 cores

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 16 / 22

Results - Strong Scaling

Mesh 8192x8192 Mesh 16384x16384

Figure 6: Strong scaling runs

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 17 / 22

Comparison

Mesh Size Last Workshop Current Workshop
40962 113.730437 s 0.815045 s

81922 195.767054 s 1.749127 s

163842 NA 9.178887 s

Table 1: Improvements in performance

Kudos to path compression optimizations and TRAM!

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 18 / 22

Results - Real World Graphs

com-Orkut com-Amazon

Figure 7: Experiments with real world graphs

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 19 / 22

Current Issues

Figure 8: Bottleneck will be observed at
boss1 when edges (v1, v3) and (v0, v2)
are processed during later stages of
Phase 1

Potential bottlenecks at the
root of the biggest inverted tree
for dense graphs with very few
number of components

Cases where component roots
are unevenly distributed among
the chares leading to load
imbalance in Phase 2

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 20 / 22

Outline

1 Related Work

2 Parallel Union-Find in Charm++

3 Path Compression

4 Implementation

5 Performance Evaluation

6 What’s In Store

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 20 / 22

Future Work

On the to-do list:

Optimizing Phase 1 to remove bottleneck and improve weak
scalability

Performance evaluation using large ChaNGa datasets

Implement a Python interface for library using Charmpy

Code and examples on Gerrit: users/karthik/unionFind

Acknowledgements: This material is based in part upon work supported
by the NSF, SI2-SSI: Collaborative Research: ParaTreet: Parallel Software
for Spatial Trees in Simulation and Analysis (NSF #1550554).

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 21 / 22

Thank You

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 22 / 22

	Related Work
	Parallel Union-Find in Charm++
	Path Compression
	Implementation
	Performance Evaluation
	What's In Store

