
Improving NAMD Performance on
Multi-GPU Platforms

David J. Hardy

Theoretical and Computational Biophysics Group
Beckman Institute for Advanced Science and Technology

University of Illinois at Urbana-Champaign
http://www.ks.uiuc.edu/~dhardy/

16th Annual Workshop on Charm++ and its Applications
April 11, 2018

Outline
• NAMD’s use of GPUs as coprocessors, a historical perspective

- NAMD has been developed for more than 20 years

- First full-featured molecular dynamics code to adopt CUDA

- Stone, et al. J Comput Chem, 28:2618-2640, 2007

• The challenge posed by today’s multi-GPU architectures

• How can Charm++ help address these challenges?

Parallelism in Molecular Dynamics Limited to Each Timestep

Computational workflow of MD:

Initialize coordinates forces, coordinates

Update
 coordinates

Force
calculation

Occasional output of reduced quantities
(energy, temperature, pressure)

Occasional output of coordinates (trajectory snapshot)

about 99% of
computational work

about 1% of
computational work

Work Dominated by Nonbonded Forces
90% — Non-bonded forces, short-range cutoff

 5% — Long-range electrostatics, gridded (e.g. PME)

 2% — Bonded forces (bonds, angles, etc.)

 2% — Correction for excluded interactions

 1% — Integration, constraints, thermostat, barostat

force
calculation

update
coordinates

Apply GPU acceleration first to the most expensive part

NAMD Hybrid Decomposition with Charm++

• Spatially decompose data and
communication

• Separate but related work
decomposition

• “Compute objects” create
much greater amount of
parallelization, facilitating
iterative, measurement-based
load balancing system, all from
use of Charm++

Kale et al., J. Comp. Phys. 151:283-312, 1999

Phillips et al., SC2002

Offload to GPU

Objects are assigned to processors and queued as data arrives

Overlap Calculations, Offload Nonbonded Forces

Early Nonbonded Forces Kernel Used All Memory Systems
• Start with most expensive calculation: direct nonbonded interactions.
• Decompose work into pairs of patches, identical to NAMD structure.
• GPU hardware assigns patch-pairs to multiprocessors dynamically.

16kB Shared Memory
Patch A Coordinates & Parameters

32kB Registers
Patch B Coords, Params, & Forces

Texture Unit
Force Table
Interpolation

Constants
Exclusions

8kB cache
8kB cache

32-way SIMD Multiprocessor
32-256 multiplexed threads

768 MB Main Memory, no cache, 300+ cycle latency

Force computation on single multiprocessor (GeForce 8800 GTX has 16)

NAMD Performance Improved Using Early GPUs

• Full NAMD, not test harness
• Useful performance boost

– 8x speedup for nonbonded
– 5x speedup overall w/o PME
– 3.5x speedup overall w/ PME
– GPU = quad-core CPU

• Plans for better performance
– Overlap GPU and CPU work.
– Tune or port remaining work.

• PME, bonded, integration, etc.

ApoA1 Performance

fa
st
er

se
co

nd
s p

er
 st

ep
0

0.75

1.5

2.25

3

CPU GPU

Other
PME
Nonbond

2.67 GHz Core 2 Quad Extreme + GeForce 8800 GTX

Reduce Communication Latency by Separating Work Units

Remote Force Local ForceGPU

CPU

Other Nodes/Processes

LocalRemote

x
f f

f

f

Local x

x

Update

One Timestep

x

Phillips et al., SC2008

Early GPU Fits Into Parallel NAMD as Coprocessor

• Offload most expensive calculation: non-bonded forces

• Fits into existing parallelization

• Extends existing code without modifying core data structures

• Requires work aggregation and kernel scheduling considerations to
optimize remote communication

• GPU is treated as a coprocessor

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics
Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.eduGTC 2017

NAMD Scales Well on Kepler Based Computers

(2fs timestep)

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 256 512 1024 2048 4096 8192 16384
Number of Nodes

21M atoms

224M atoms

Pe
rfo

rm
an

ce
 (n

s
pe

r d
ay

)

Blue Waters XK7 (GTC16)
Titan XK7 (GTC16)

Edison XC30 (SC14)
Blue Waters XE6 (SC14)

11

Kepler based

Large Rate Difference Between Pascal and CPU

• Balance between GPU and CPU capability keeps shifting towards GPU
• NVIDIA plots show only through Pascal — Volta widens the performance gap!
• Difference made worse by multiple GPUs per CPU (e.g. AWS, DGX, Summit)
• Past efforts to balance work between GPU and CPU are now CPU bound

20x FLOP rate difference
between GPU and CPU

Requires full use of
CPU cores and vectorization!

Reduce Latency, Offload All Force Computation
• Overlapped GPU communication and computation (2012)

• Offload atom-based work for PME (2013)

- Use higher order interpolation with coarser grid

- Reduce parallel FFT communication

• Faster nonbonded force kernels (2016)

• Offload entire PME using cuFFT (for single node use) (2016)

• Offload remaining force terms (2017)

- Includes: bonds, angles, dihedrals, impropers, crossterms, exclusions

Emphasis on improving
communication latency

Emphasis on
using GPUs

more effectively

Overlapped GPU Communication and Computation

• Allows incremental results from a single grid to be
processed on CPU before grid finishes on GPU

• Allows merging and prioritizing of remote and local work
• GPU side:

- Write results to host-mapped memory (also without streaming)
- __threadfence_system() and __syncthreads()
- Atomic increment for next output queue location
- Write result index to output queue

• CPU side:
- Poll end of output queue (int array) in host memory

Non-overlapped Kernel Communication

Integration unable to start until GPU kernel finishes

Overlapped Kernel Communication

GPU kernel communicates results while running; patches begin integration as soon as data arrives

7 S6623: Advances in NAMD GPU Performance

Non-bonded force computation in NAMD

• Two levels of spatial
sorting
– Simulation box is divided

into patches
– Within the patch, atoms

are sorted spatially into
groups of 32 using
orthogonal recursive
bisection method

4
4

4

Faster

8 S6623: Advances in NAMD GPU Performance

Non-bonded force compute

• Compute = all pairwise
interactions between two patches

Compute 1

Compute 2

32

32

Compute 1

P
at

ch
 1

P

at
ch

 2

Patch 3

Patch 2

• For GPU,
compute is split
into tiles of size
32x32 atoms

Faster

9 S6623: Advances in NAMD GPU Performance

Non-bonded force computation

Atoms in patch i

A
to

m
s

in
 p

at
ch

 j

32

31

30

1

2

3

Fj

Fi

• One warp per tiles
• Loop through 32x32 tile diagonally
– Avoids race condition when storing forces Fi and Fj

• Bitmask used for exclusion lookup

32

32

W
ar

p
1

W
ar

p
2

W
ar

p
3

W
ar

p
4

Faster

12 S6623: Advances in NAMD GPU Performance

Neighbor list sorting

• Tile lists executed on the same thread block should
have approximately the same work load

• Simple solution is to sort according to tile list length

• Also minimizes tail effects at the end of kernel
execution

Load imbalance!

No load imbalance

Thread block
sort

W
ar

p
1

W
ar

p
2

W
ar

p
3

W
ar

p
1

W
ar

p
2

W
ar

p
3

W
ar

p
4

Single-Node GPU Performance Competitive on Maxwell

New kernels by Antti-Pekka Hynninen, NVIDIA
Stone, Hynninen, et al., International Workshop on OpenPOWER for HPC (IWOPH'16), 2016

More Improvement from Offloading Bonded Forces

• GPU offloading for bonds, angles, dihedrals,
impropers, exclusions, and crossterms

• Computation in single precision
• Forces are accumulated in 24.40 fixed point
• Virials are accumulated in 34.30 fixed point
• Code path exists for double precision

accumulation on Pascal and newer GPUs
• Reduces CPU workload and hence improves

performance on GPU-heavy systems

DGX-1

Sp
ee
du

p

1

1.175

1.35

1.525

1.7

apoa1 f1atpase stmv

New kernels by Antti-Pekka Hynninen, NVIDIA

Supercomputers Increasing GPU to CPU Ratio

Blue Waters, Titan with Cray XK7 nodes
1 K20 / 16-core AMD Opteron

Summit nodes
6 Volta / 42 cores IBM Power 9

Only 7 cores supporting each Volta!

Revolutionary GPU-based Hardware

Equivalent compute power to about 160 nodes of Blue Waters

DGX-2: 3.5 CPU cores / GPU vs. Blue Waters: 16 CPU cores / GPU

24

• 16 Volta GPUs
• 16 x 32 GB HBM2
• Fast switch makes memory

uniformly accessible
• 2 Intel Xeon Platinum CPUs

(2 x 28 cores)
• 1.5 TB main memory

Limited Scaling Even After Offloading All Forces
Results on NVIDIA DGX-1 (Intel Haswell using 28-cores with Volta V100 GPUs)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4

STMV 1 million atoms

P
e
rf

o
rm

a
n
ce

 (
n
s

p
e
r

d
a
y)

Number of NVIDIA Voltas

Offloading all forces
Nonbonded forces only

NAMD 2.12

NAMD 2.13

CPU Integrator Calculation (1%) Causing Bottleneck
Nsight Systems profiling of NAMD running
STMV (1M atoms) on 1 Volta & 28 CPU cores

GPU is not being kept busy

Too much
communication!

Too much CPU work:
2200 patches across 28 cores

Patches running sequentially within each core

nonbonded

bonded

PME

CPU integrator work is mostly data parallel, but…
• Uses double precision for positions, velocities, forces

- Data layout is array of structures (AOS), not well-suited to vectorization

• Each NAMD “patch” runs integrator in separate user-level thread to
make source code more accessible

- Benefit from vectorization is reduced, loop over 200–600 atoms in each patch

• Too many exceptional cases handled within same code path

- E.g. fixed atoms, pseudo-atom particles (Drude and lone pair)

- Test conditionals for simulation options and rare events (e.g. trajectory output)
every timestep

CPU integrator work is mostly data parallel, but…
• Additional communication is required

- Send reductions for kinetic energies and virial

- Receive broadcast periodic cell rescaling when simulating constant pressure

• A few core algorithms have sequential parts, with reduced parallelism

- Not suitable for CPU vectorization

- Rigid bond constraints — successive relaxation over each hydrogen group

- Random number generator — Gaussian numbers using Box–Muller transform
with rejection

- Reductions calculated over “hydrogen groups” — irregular data access patterns

Strategies for Overcoming Bottleneck
• Data structures for CPU vectorization

- Convert atom data storage from AOS (array of structures) form into vector friendly SOA
(structure of arrays) form

• Algorithms for CPU vectorization

- Replace non-vectorizing RNG code with vectorized version

- Replace rigid bond constraints sequential algorithm with one capable of fine-grained
parallelism (maybe LINCS or Matrix-SHAKE)

• Offload integrator to GPU

- Main challenge is aggregating patch data

- Use vectorized algorithms, adapt curand for Gaussian random numbers

Goal: Developing GPU-based NAMD
• CPU primarily manages GPU kernel launching

- CPU prepares and aggregates data structures for GPU, handles Charm++ communication

• Reduces overhead of host-to-device memory transfers

- Data lives on the GPU, clusters of patches

- Communicate edge patches for force calculation and atom migration

• Design new data structures capable of GPU or CPU vectorization

- Major refactor of code to reveal more data parallelism

• Kernel-based design with consistent interfaces across GPU and CPU

- Need fallback kernels for CPU (e.g. continue to support Blue Waters and Titan)

Some Conclusions
For HPC apps in general and NAMD in particular

• Balance between CPU and GPU computational capability continues to shift in favor
of the GPU

- The 1% workload from 10 years ago is now 60% or more in wall clock time

• Any past code that has attempted to load balance work between CPU and GPU is
today likely to be CPU bound

• Best utilization of GPU might require keeping all data on the GPU

- Motivates turning a previously CPU-based code using GPU as an accelerator into a GPU-
based code using CPU as a kernel management and communication coprocessor

• Volta + CUDA 9.x + CUDA Toolkit Libraries provide enough general purpose
support to allow moving an application entirely to the GPU

What will Charm++’s role be for multi-GPU NAMD?
• Single-node multi-GPU case

- With everything running on CPU-managed GPUs, Charm++ has nothing to do!

- Even now, NAMD patches are non-migratable

• Multi-node multi-GPU case

- Charm++ handles internode communication

- Load balancing is still ineffective, until Charm++ understands GPU work

• Charm++ could help us make use of improvements to device
communication, like NVLink

Acknowledgments
• Special thanks to:

- John Stone and others from Theoretical Biophysics Research Group, Beckman Institute, UIUC

- Ke Li and others from NVIDIA CUDA Team

- NVIDIA NSight Systems Team

- James Phillips, NCSA, UIUC

- In memoriam Antti-Pekka Hynninen, NVIDIA

- Ronak Buch and Karthik Senthil from Parallel Programming Laboratory, Dept of Computer Science, UIUC

• Grants:

- NIH P41-GM104601 Center for Macromolecular Modeling and Bioinformatics

- Summit Center for Accelerated Application Readiness, OLCF, ORNL

