
Recent Advances in Heterogeneous Computing using Charm++

Jaemin Choi, Michael Robson

Parallel Programming Laboratory
University of Illinois Urbana-Champaign

April 12, 2018

1 / 24



Heterogeneous Computing

▶ Computing with different types of devices
▶ In this talk: using GPUs to boost performance
▶ GPU

▶ Throughput oriented
▶ Data parallel (SIMD)
▶ Many simple, low frequency cores
▶ Teraflops of computing power
▶ Separate memory (GDDR or HBM)
▶ Data transfer overhead

▶ Now a critical factor of performance
Figure: NVIDIA Tesla V1001

1
Image source: https://www.nvidia.com/en-us/data-center/tesla-v100

2 / 24

https://www.nvidia.com/en-us/data-center/tesla-v100


How to Utilize GPUs in Charm++

1. Use CUDA directly
▶ Let each chare offload (small) kernels
▶ Or manually aggregate data at a synchronization point and offload one big kernel

2. Use GPU Manager library of Charm++
▶ Why? What good is it?

3 / 24



Problems with Using GPUs in Charm++

▶ Due to overdecomposition and asynchrony

1. Granularity of work

2. Blocking offload API

3. Responsiveness

4 / 24



Problem 1: Granularity of Work

▶ Each chare is fine-grained
▶ Contain little data and work → small kernels
▶ Kernels should be able to execute concurrently
▶ Or need to aggregate kernels

5 / 24



Problem 2: Blocking Offload API

▶ Commonly used CUDA API are blocking
▶ E.g. cudaDeviceSynchronize(), cudaStreamSynchronize()

▶ PEs are implemented as persistent threads on CPU cores
▶ Blocking call thus prevents another chare from executing
▶ Another problem: number of concurrent kernels limited to the number of PEs
▶ Offload API should be non-blocking for Charm++

6 / 24



Problem 3: Responsiveness

Figure: Slow initiation
Figure: Slow response

1. Slow initiation
▶ Method offloading work must wait if target PE is busy (even if the GPU is free)

2. Slow response
▶ Handling completed GPU work delayed if target PE is busy

7 / 24



Current GPU Manager

▶ Addresses Problem 2 (blocking offload API)
▶ User constructs and submits a WorkRequest object, specifying

▶ Data buffers and directions of transfer
▶ Kernel to be executed and its specifications (e.g. grid size, block size)

▶ Runtime tracks WorkRequests, overlapping data transfers with kernel execution
▶ But does NOT overlap multiple kernel executions
▶ Because only one CUDA stream is used for kernels

▶ Execution continues without blocking after WorkRequest submission
▶ 3 CUDA streams used internally: Data-in, Kernel, Data-out
▶ Problems

▶ Only one CUDA stream for all kernels
▶ Unnecessarily complex API

8 / 24



New GPU Manager: Release 6.9.0

▶ Partially addresses Problem 1 (granularity of work)
▶ Allows kernels to execute in separate CUDA streams
▶ Runtime support for kernel aggregation is ongoing research

▶ Non-blocking feature implemented using CUDA events
▶ Much simpler API (almost identical to CUDA API)

▶ Hybrid API: hapi prefix instead of cuda
▶ hapiAddCallback(): invoke provided Charm++ callback function when data

transfer/kernel execution completes, replaces cudaStreamSynchronize()

▶ Ongoing research to address Problem 3 (responsiveness)

9 / 24



Non-blocking Implementation of Offloading

▶ Use CUDA events to detect completion of GPU work
▶ Each PE maintains a queue of events
▶ Queue is checked in the scheduler before choosing what to execute next
▶ Charm++ callback invoked on completion to continue program flow
▶ Impractical for the user to implement

▶ Unclear where in the program flow the queue should be checked
▶ Unclear how frequent the checking should occur

▶ Alternative: CUDA callback, but single callback thread becomes a bottleneck

10 / 24



Matmul Code Comparison: Current GPU Manager

11 / 24



Matmul Code Comparison: CUDA, New GPU Manager

Figure: CUDA
Figure: New API

12 / 24



Performance Evaluation: Test Environment

▶ Single compute node of OLCF Titan
▶ Up to 8 cores of AMD Opteron 6274 CPU
▶ 32GB DDR3 memory
▶ NVIDIA Tesla K20X GPU

13 / 24



Performance Evaluation: busywait

▶ Benchmark designed to validate new GPU Manager
▶ Tasks (kernels on GPU) busywait both on CPU and GPU
▶ Vary how much work out of total is offloaded, and how long they take
▶ 3 configurations of task duration:

▶ CPU 1 ms, GPU 10 ms
▶ CPU 10 ms, GPU 1 ms
▶ CPU 10 ms, GPU 10 ms

▶ 8 PEs, 16 chares per PE, 128 chares total, 100 iterations
▶ 32 concurrent kernels with new GPU Manager (vs. 8 without)
▶ Up to 4.79x speedup compared to directly using CUDA
▶ Effectiveness of runtime support depends on application characteristics

14 / 24



Performance Evaluation: busywait

Figure: Speedup of busywait benchmark
15 / 24



Performance Evaluation: stencil2d

▶ 2D 5-point iterative stencil benchmark
▶ Evaluate effectiveness under realistic workload
▶ 16,384 x 16,384 grid, decomposed into 512 x 512 blocks (chares)
▶ 8 PEs, 128 chares per PE, 1,024 chares total, 100 iterations
▶ Vary percentage of chares that offload work to GPU
▶ 32 concurrent kernels with new GPU Manager (vs. 8 without)
▶ Up to 2.75x speedup compared to directly using CUDA

16 / 24



Performance Evaluation: stencil2d

Figure: Execution Time and Speedup of stencil2d benchmark
17 / 24



GPU Applications: ChaNGa

▶ Cosmological N-body
simulations

▶ Leverages GPU Manager
▶ Offloads physics kernels
▶ Active work in optimization

Figure: ChaNGa GPU Manager Design

18 / 24



GPU Applications: Recent ChaNGa Results

Figure: ChaNGa dwf1 on 4 XK Nodes of BlueWaters

19 / 24



GPU Applications: ChaNGa GPU Tree Walk

Build 
interaction listCPU:

GPU:

CPU:

GPU:

Initialization Data transfer Local Compute

Build 
interaction list

Build 
interaction list

Build 
interaction list

Remote
work

Remote
work

Remote Compute

4.85X speedup over baseline best case
3.66X speedup on average

Figure: Strategy Comparison
Jianqiao Liu, Purdue University

20 / 24



GPU Applications: ChaNGa GPU Tree Walk

Build 
interaction listCPU:

GPU:

CPU:

GPU:

Initialization Data transfer Local Compute

Build 
interaction list

Build 
interaction list

Build 
interaction list

Remote
work

Remote
work

Remote Compute

4.85X speedup over baseline best case
3.66X speedup on average

Figure: Strategy Comparison
Jianqiao Liu, Purdue University

21 / 24



GPU Applications: ChaNGa on GPU Generations

Mert Hidayetoglu, University of Illinois
22 / 24



Conclusion

▶ New GPU Manager: presented as a ACM SRC poster at SC’17
▶ 3 main issues with using GPUs in Charm++

1. Granularity
2. Blocking
3. Responsiveness

▶ Mostly resolved issue #2, but need more work on issues #1 and #3
▶ Interesting research topics with fine-grain tasks and GPUs
▶ Increasing importance of accelerators even for irregular applications

23 / 24



Thank You

24 / 24


