
Recent Developments in Dynamic

Load Balancing

Ronak Buch, Kavitha Chandrasekar, Juan Galvez, Eric Mikida

rabuch2@illinois.edu

April 11, 2018

16th Annual Workshop on Charm++ and its Applications

Parallel Programming Laboratory, University of Illinois at Urbana-Champaign

Table of Contents

1. Introduction

2. Topological Strategies

3. Performance Improvements

4. New LB Framework

5. Heterogeneous Load Balancing

6. Miscellaneous

7. Summary

1

Introduction

Background

Load balancing is a key feature of Charm++, integral to achieving scalability and

performance

Improve performance of computation:

• Minimize maximum load of compute resources

• Improve resource utilization

Improve performance of communication:

• Place communicating objects near each other

• Minimize network load

⇒ Improve application execution time

2

Background

Load balancing is a key feature of Charm++, integral to achieving scalability and

performance

Improve performance of computation:

• Minimize maximum load of compute resources

• Improve resource utilization

Improve performance of communication:

• Place communicating objects near each other

• Minimize network load

⇒ Improve application execution time

2

Background

Load balancing is a key feature of Charm++, integral to achieving scalability and

performance

Improve performance of computation:

• Minimize maximum load of compute resources

• Improve resource utilization

Improve performance of communication:

• Place communicating objects near each other

• Minimize network load

⇒ Improve application execution time

2

Background

Load balancing is a key feature of Charm++, integral to achieving scalability and

performance

Improve performance of computation:

• Minimize maximum load of compute resources

• Improve resource utilization

Improve performance of communication:

• Place communicating objects near each other

• Minimize network load

⇒ Improve application execution time

2

Challenges

• Very large machines, will only get bigger

• Hundreds of thousands of cores, millions of objects

• Strong scaling makes problem smaller, LB bigger

• Need to reduce costs of LB

• Collecting statistics

• Efficiency of statistics communication

• Comm-aware LB requires comm statistics, but expensive to collect and use

• Running strategies
• Migrating objects

• Move fewer objects

• Move objects within same node or nearby is cheaper than elsewhere

3

What We’re Working On

• New strategies aimed at preserving topological mapping

• Performance improvements for existing LBs

• Redesign of LB Framework

• LB for heterogeneous systems

• Miscellaneous features

4

Topological Strategies

Distributed Graph Refine Strategy

• Neighbor-based diffusion retains partitioning of communication graph

• Strategy

• Each node finds neighbors in topology using Charm++ TopoManager

• Each PE on node sends local load statistics to representative PE on the node

• Representative PE on each node communicates load stats with neighbors

• Object load tokens are sent/received to/from the neighbor PEs to reach a

stable state where load is balanced

• Load balancing is performed after this token passing stage

• Since the load is transferred only to neighbors, communication cost increases

by up to one hop per LB step

5

Distributed Graph Refine Strategy

• Diffusion-based scheme done

iteratively

• Takes multiple iterations to reach

stable state

• Avoids non-neighbor communication

and has fewer migrations, similar to

refinement based strategies

• Same step diffusion: Once tokens

about load information have been

exchanged, LB is performed

6

Communication Awareness

• Gain-value computation is performed to select objects to migrate

• For each object in the node:

• Compute a gain value associated with owner node and neighbor node
• Using heap of gain values of objects, get object with minimum gain value

• Gain value for neighbors are taken into account

• Once object is set to be moved, update gain values of other objects in node

⇒ Keeps heavily communicating objects on the same node

7

Evaluation with K-Neighbor

• K -Neighbor with varied stride for

communication

• Objects with low within node

communication are more amenable

to be migrated during LB

• 64 nodes using 8 cores per node on

Blue Waters

• DiffusionLB minimizes

communication, overall execution time

• Metis results in high communication,

we are exploring this
8

Performance Improvements

Performance Improvements

Performance experiments have been done in various parts of the LB framework,

but implementations have been ad hoc and not generalizable

Results are being incorporated into the new LB framework, which will provide

benefits to all strategies

9

Fast-CentralLB

• Optimizes all phases of centralized load balancing:

1. Sending stats to central PE

2. LB algorithm (GreedyRefine implementation faster than GreedyLB)

3. Sending migration decisions

• Stats and migration messages are radically smaller than before

• Currently only using (Topo)GreedyRefine

• Observed speedup in balancing time is 4x-7x over CentralLB+GreedyLB

10

Fast-CentralLB Results

Stencil3d on Blue Waters (4 procs/node, 7 worker threads/process)

Load Balancer LB Time (s) Migration Time (s) Total Time (s)

Dummy 5.8 - 22.3

Greedy 40.0 - 64.9

GreedyRefine 6.4 2.1 23.9

TopoGreedyRefine 5.7 1.2 20.0

Table: 1024 Nodes, 29k PEs, 229k Objects

11

Fast-CentralLB Results, Con’t

Stencil3d on Blue Waters (4 procs/node, 7 worker threads/process)

Load Balancer LB Time (s) Migration Time (s) Total Time (s)

Dummy 13.7 - 32.1

Greedy 136.5 - 171.5

GreedyRefine 29.3 4.5 53.3

TopoGreedyRefine 22.6 2.8 39.3

Table: 4096 Nodes, 115k PEs, 917k Objects

12

New LB Framework

Existing Load Balancing Framework

• Current framework core consists of:

• Database: LBDatabase, LBDBManager, LBDB

• MetaBalancer

• CentralLB

• BaseLB

• No clear delineation of responsibility across all entities

• Unnecessary duplication of data structures

• A lot of core logic shows up in strategies

• Very little API accessible to application

13

Current Issues

• Strategies cannot easily be run with different metrics

• Most strategies are agnostic of the semantics of the data, e.g. GreedyLB

works equally well in balancing objects by size rather than load

• Strategies cannot be run on arbitrary domains

• Should be able to run on the level of single process, single node, group of

nodes, whole job, etc.

• Duplication of data in tracing and load balancing

• Strategy logic not well abstracted from LB infrastructure

• Statistics collection and usage inflexible and inextensible

• Hard to access and control LB from application at runtime

14

New LB Framework

15

New LB Framework

• Currently in progress, release expected later this year

• Solves all of the LB issues raised earlier

• Improves performance of load balancing infrastructure

• Cleanly separate the various components of the LB framework

• Component-based architecture allows for flexible and easy orchestration of

the various parts of load balancing

• Writing strategies becomes simpler, more concise, and more flexible

• e.g., Greedy from 157 LOC to 22 LOC

16

Greedy in Existing LB Framework (Excerpt of 1 of 3 files)

#include <algorithm >
#include "charm ++.h"
#include "ckgraph.h"
#include "cklists.h"
#include "GreedyLB.h"

using namespace std;

CreateLBFunc_Def(GreedyLB , "always assign the heaviest obj onto\

lightest loaded processor.")

GreedyLB :: GreedyLB(const CkLBOptions &opt): CBase_GreedyLB(opt)

{
lbname = "GreedyLB";

if (CkMyPe ()==0)

CkPrintf("[%d] GreedyLB created\n",CkMyPe ());

}

bool GreedyLB :: QueryBalanceNow(int _step)

{
return true;

}

class GreedyLB :: ProcLoadGreater {
public:

bool operator ()(const ProcInfo &p1, const ProcInfo &p2) {

return (p1.getTotalLoad () > p2.getTotalLoad ());

}

};

class GreedyLB :: ObjLoadGreater {
public:

bool operator ()(const Vertex &v1, const Vertex &v2) {

return (v1.getVertexLoad () > v2.getVertexLoad ());

}

};

void GreedyLB ::work(LDStats* stats)

{
int obj , objCount , pe;

int n_pes = stats ->nprocs ();

int *map = new int[n_pes];

std::vector <ProcInfo > procs;

for(pe = 0; pe < n_pes; pe++) {

map[pe] = -1;

if (stats ->procs[pe]. available) {

map[pe] = procs.size ();

procs.push_back(ProcInfo(pe, stats ->procs[pe]. bg_walltime , 0.0, stats ->procs[pe].pe_speed , true));

}

}

// take non migratbale object load as background load

for (obj = 0; obj < stats ->n_objs; obj++)

{

LDObjData &oData = stats ->objData[obj];

if (!oData.migratable) {

int pe = stats ->from_proc[obj];

pe = map[pe];

if (pe==-1)

CmiAbort("GreedyLB: nonmigratable object on an unavail processor !\n");

procs[pe]. totalLoad () += oData.wallTime;

}

}

delete [] map;

// Add the overhead to the total load

for (pe = 0; pe<procs.size (); pe++) {

procs[pe]. totalLoad () += procs[pe]. overhead ();

}

// build object array
std::vector <Vertex > objs;

for(int obj = 0; obj < stats ->n_objs; obj++) {

LDObjData &oData = stats ->objData[obj];

int pe = stats ->from_proc[obj];

if (!oData.migratable) {

if (!stats ->procs[pe]. available)

CmiAbort("GreedyLB cannot handle nonmigratable object on an unavial processor !\n");
continue;

}

double load = oData.wallTime * stats ->procs[pe]. pe_speed;

objs.push_back(Vertex(obj , load , stats ->objData[obj]. migratable , stats ->from_proc[obj]));

}

// max heap of objects

sort(objs.begin(), objs.end(), GreedyLB :: ObjLoadGreater ());

// min heap of processors

make_heap(procs.begin(), procs.end(), GreedyLB :: ProcLoadGreater ());

if (_lb_args.debug ()>1)

CkPrintf("[%d] In GreedyLB strategy\n",CkMyPe ());

// greedy algorithm
int nmoves = 0;

for (obj=0; obj < objs.size (); obj++) {

ProcInfo p = procs.front ();

pop_heap(procs.begin(), procs.end(), GreedyLB :: ProcLoadGreater ());

procs.pop_back ();

// Increment the time of the least loaded processor by the cpuTime of

// the ‘heaviest ’ object

p.totalLoad () += objs[obj]. getVertexLoad () / p.pe_speed ();

// Insert object into migration queue if necessary

const int dest = p.getProcId ();

const int pe = objs[obj]. getCurrentPe ();

const int id = objs[obj]. getVertexId ();

if (dest != pe) {

stats ->to_proc[id] = dest;
nmoves ++;

if (_lb_args.debug ()>2)

CkPrintf("[%d] Obj %d migrating from %d to %d\n", CkMyPe(),objs[obj]. getVertexId (),pe ,dest);

}

// Insert the least loaded processor with load updated back into the heap

procs.push_back(p);

push_heap(procs.begin(), procs.end(), GreedyLB :: ProcLoadGreater ());

}

if (_lb_args.debug ()>0)

CkPrintf("[%d] %d objects migrating .\n", CkMyPe(), nmoves);

if (_lb_args.debug ()>1) {

CkPrintf("CharmLB > Min obj: %f Max obj: %f\n", objs[objs.size ()-1]. getVertexLoad (), objs [0]. getVertexLoad ());

CkPrintf("CharmLB > PE speed:\n");

for (pe = 0; pe<procs.size (); pe++)

CkPrintf("%f ", procs[pe]. pe_speed ());

CkPrintf("\n");

CkPrintf("CharmLB > PE Load:\n");

for (pe = 0; pe<procs.size (); pe++)

CkPrintf("%f (%f) ", procs[pe]. totalLoad (), procs[pe]. overhead ());

CkPrintf("\n");

}

if (_lb_args.metaLbOn ()) {
double max_load = 0;
double avg_load = 0;

for (pe = 0; pe<procs.size (); pe++) {

if (procs[pe]. totalLoad () > max_load) {

max_load = procs[pe]. totalLoad ();

}

avg_load += procs[pe]. totalLoad ();

}

stats ->after_lb_max = max_load;

stats ->after_lb_avg = avg_load/procs.size ();
stats ->is_prev_lb_refine = 0;

if (_lb_args.debug() > 0)

CkPrintf("GreedyLB > After lb max load: %lf avg load: %lf\n", max_load , avg_load/procs.size ());

}

}

#include "GreedyLB.def.h"

17

Greedy in New LB Framework

#ifndef _GREEDY_ALG_H

#define _GREEDY_ALG_H

#include <algorithm >

#include <queue >

#include <vector >

template <typename O, typename P, typename S>

class GreedyAlg {

public:

void solve(vector <O> &objs , vector <P> &procs , S &solution , bool objsSorted)

{

if (! objsSorted) sort(objs.begin(), objs.end(), lb:: CmpLoadGreater <O>());

priority_queue <P, vector <P>, lb:: CmpLoadGreater <P> > procHeap(lb:: CmpLoadGreater <P>(), procs);

for (int i = 0; i < objs.size (); i++) {

const O &o = objs[i];

P p = procHeap.top(); procHeap.pop();

ptr(p)->assign(o); // update load of processor

solution.assign(o, p); // update solution

procHeap.push(p);

}

}

};

#endif

18

Strategies in New LB Framework

• Most strategies consider list of “objects” (with loads), and “processors”

(with background loads)

• Objects do not necessarily have to be individual chares, and processors do

not have to be cores

• LB strategies simplified so they merely assign objects to processors to

minimize max processor load

• Such strategies can be used at any level of the hierarchy that deals with

generic “objects” and “processors”

• The framework can change what is passed to the strategy if strategy is

generic enough

19

Hierarchical Infrastructure Redesign

• New hierarchical load balancing infrastructure replaces current CentralLB

and HybridLB infrastructure

• Implements mentioned performance improvements

• Pluggable at each tree level, supports many different kinds of strategies

• How each tree level aggregates stats, makes LB decisions, etc. can be

changed

• Arbitrary hierarchies are supported, e.g. a four level tree of

cores → processes → nodes → entire job

20

Heterogeneous Load Balancing

Heterogeneous Loads

As machines get more diverse, many FLOPs come from non-CPU devices

Standard CPU load balancing in Charm++ is no longer sufficient

There are many challenges:

• How do we balance multiple metrics at once?

• How do we measure load on multiple devices?

• How do we account for data movement?

Some programs may have CPU only and GPU only work, while others may have

work that can execute on any device, and yet others may have both sorts

21

Current Status

Experimental versions of multiple heterogeneous execution paradigms exist:

• Vector load balancing for balancing applications with separate CPU and

GPU (or other) routines

• Accel load balancing for balancing application with work that can be

dynamically targeted to CPUs or GPUs (or others)

Currently working on making these production ready, to be released with new LB

framework

Adding LB measurement to GPU Manager (talk tomorrow)

22

Vector Load Balancing

• Rather than a single value for load, use a vector of different load metrics

• For example, < cpuload , gpuload > or < phase1, phase2, phase3 >

• Different dimensions may have different optimization functions, e.g.

minimize, maximize, constraint

• Not necessarily just for heterogeneous hardware, can also be used by

applications with unbalanced phases

• Change strategies to consider all dimensions of vector while making decisions

23

Vector LB Algorithms

Currently experimenting with different algorithms for vector LB

• GreedyMaxLB uses maximum of the vector as load, using standard greedy

assignment

• MultiGreedyLB creates a separate heap for each dimension of the vector

and greedily assigns

• Different from GreedyMaxLB because it maps to PE with minimum value for

object’s highest load dimension rather than PE with smallest maximum value

• GreedyNormLB places objects to minimize some vector norm

24

Vector LB Results

Figure: NullLB vs. GreedyMaxLB vs. MultiGreedyLB vs. GreedyNormLB

25

Vector LB Performance

Load Balancer Time

NullLB 0.020 s

GreedyLB 0.357 s

MultiGreedyLB 0.319 s

GreedyNormLB 12.088 s

Figure: LB Strategy Time (512 PEs, 10k objects, 2 dimensions, simulation)

⇒Tradeoffs between balance quality and performance still unclear

26

Vector LB Performance

Load Balancer Time

NullLB 0.020 s

GreedyLB 0.357 s

MultiGreedyLB 0.319 s

GreedyNormLB 12.088 s

Figure: LB Strategy Time (512 PEs, 10k objects, 2 dimensions, simulation)

⇒Tradeoffs between balance quality and performance still unclear

26

Miscellaneous

Miscellaneous

• MetaBalancer:

• System that uses ML to automatically select optimal LB frequency

• Adding automatic selection of LB strategy

• Currently the model is pretrained and fixed, working on adding a way to

allow it to be trained by end users and for arbitrary strategies

• TopoGreedyRefine:

• Extension of GreedyRefine (see last year’s LB talk) that constrains

migrations to some local topological neighborhood

• To be released with new framework

• DistributedLB

• Migration decisions are now done in multiple phases

• Earlier phases prioritize the most overloaded PEs, which increases the

probability that they migrate work
27

Summary

Summary

• New topological diffusion strategy optimizes for communication costs and

scalability

• Performance improvements in the LB infrastructure

• New LB framework will improve performance, usability, flexibility, and

applicability

• Heterogeneous load measurement and strategies address CPU/GPU and

other complex imbalance

28

Questions?

28

	Introduction
	Topological Strategies
	Performance Improvements
	New LB Framework
	Heterogeneous Load Balancing
	Miscellaneous
	Summary

