
HANDLING LOAD IMBALANCE IN
DISTRIBUTED & SHARED MEMORY

Presenters: Harshitha Menon, Seonmyeong Bak

PPL Group
Phil Miller, Sam White, Nitin Bhat,

Tom Quinn, Jim Phillips, Laxmikant Kale

MOTIVATION

INTEGRATED RTS MODEL

APPLICATIONS

2

INTRODUCTION

Dynamic Variations

3

Application - Machine -

INTRODUCTION

4

Dynamic variations - Load imbalance

Persistent & Transient imbalance

Vast amounts of on-node parallelism

5

Can we leverage multi-core shared
memory systems to handle transient
and persistent load imbalance while
maintaining locality with low
overhead?

INTEGRATED RTS

6

New integrated run-time system that
combines distributed programming
model with concurrent tasks

INTEGRATED RTS

7

Infrequent periodic balancing

+

Fine-grained work-sharing within the
node

TRANSIENT &
RESIDUAL IMBALANCE

8

cores cores

INTEGRATED RTS MODEL

9

CHARM++ MODEL

Asynchronous Message-Driven
Execution

Over-decomposition

Migratability

10

OVER-DECOMPOSITION

Decompose work & data units to
many more pieces than execution
units

11

OVER-DECOMPOSITION

Encapsulation of data and its
computation inherently promotes
data locality

12

MIGRATABILITY

Move work units to another
execution unit at run time.

13

CHARM++ SMP MODEL

Takes advantage of multi-core
processors

Launches one thread per core

14

CHARM++ SMP MODEL

Faster intra-node communication

Smaller memory footprint

Enables work-sharing within a node

15

INTEGRATED RTS

Combines Charm++ over-
decomposition distributed memory
model with concurrent tasks

16

PERSISTENT & TRANSIENT
LOAD BALANCE

Node-aware load balancers

Fine-grained work-sharing within the
node

17

LOAD BALANCING

Based on principle of persistence

18

NODE-AWARE
LOAD BALANCING

Hierarchical strategy

Coarsening to reduce memory and
communication overhead

Different strategies at different levels

19

HIERARCHICAL
LOAD BALANCER

20

0

0 1024

0 511 512 1023

0 64

AUTOMATIC
LOAD BALANCING

RTS decides when to do load
balancing

RTS decides which load balancer to
use at each level

21

FINE-GRAINED
WORK-SHARING

User specified tasks that can be executed on
any core within a node

Work-stealing queue

With RTS support incurs lesser overhead

CkLoop - Previous work-sharing construct in
Charm++

22

SCHEDULER SCHEDULER

23

Core0 Core1

Message QueueMessage Queue

Task Queue Task Queue

TASK CREATION

Charm++ task API

OpenMP integration

24

TASK GENERATION &
SCHEDULING

Recursive

Broadcast task message

Only when idle

History

25

RECURSIVE TASKS

Loop iterations split into half forms a
task

Work-stealing queue to share work

26

BROADCAST TASK MESSAGE

All the cores within a node receive
broadcast message for a task

Atomically increments a variable to
obtain the next chunk

27

ONLY WHEN IDLE
An atomic counter to determine
number of idle cores within a node

Selectively creates tasks depending on
that counter

Adaptively control number of tasks
generated

28

HISTORICAL DATA

Historical data on fraction of the
tasks executed locally

Use this data to determine number
of tasks to be created

29

Issues in the OpenMP interoperation
with Charm++

• Resource contention
– Oversubscription problem by separate Charm++ and OpenMP

thread pool

30

Charm++ threads

Hardware cores

OpenMP threads

of hw cores = 4 < # of threads = 10 -> oversubscription

OpenMP integration into Charm++

• Use threads on Charm++ Runtime for OpenMP
– Works on SMP mode of Charm++

• Each OpenMP task become a Charm++ runtime message
– OpenMP tasks can be migrated among cores within a node

– Used for transient load balancing within a node

• Modified GNU OpenMP 4.0, forked from GCC 4.9.3

31

SCHEDULER SCHEDULER

32

OpenMP RTS

Core0 Core1

Message QueueMessage Queue

Task Queue Task Queue

#pragma omp parallel for
for (i = 0; i < n ; i++) { 
…  
}

Issues in naïve OpenMP integration

• Overheads of message creation

– Too many messages are created

– OpenMP tasks are created even when there is no idle
thread on a node

• Applied some optimizations to solve this
overheads

33

Optimizations to solve  
the overhead of naïve OpenMP integration

• Use an atomic counter
– keep track of the number of idle threads within a node

• Use a history vector
– keep record of how many of the OpenMP tasks have

been stolen and executed by the other idle threads

• Combine these two heuristics to determine the
number of messages to be created

34

APPLICATIONS

35

• Applications
– ChaNGa

• Charm++, Cosmology Simulation
• Cosmo25 dataset is used  

(Highly clustered 2 billion particles dark simulation)

– NAMD
• Charm++, Molecular Dynamics simulation
• Energy minimization run using collective variable module  

(270,000 atoms and 200,000 bonds)
– Kripke

• MPI, Deterministic Particle Transport proxy application
• Benefit: multiple MPI ranks per node can each parallelize OMP regions across entire node if

imbalanced
• Described in the next talk on AMPI

Application Study

36

Application Study

• Machines used for evaluation

– ANL Vesta, Bluegene Q
• 2048 nodes, PowerPC A2 1.6Ghz (16 cores, 64 threads)

– NCSA Blue Waters, Cray XE/XK hybrid
• 22,640 nodes for Cray XE
• AMD interlagos 6276 (16 cores, 32 threads)

37

Projection of ChaNGa with cosmo25 on Blue Waters, Cray XE6
(128K cores)

38

Projection of ChaNGa with cosmo25 on Blue Waters, Cray XE6
(128K cores)

39

• >>

ChaNGa with cosmo25 on Blue Waters, Cray XE6

2.84

1.40

1.28

2.21x speed up

40

• ˆChaNGa

NAMD with colvar module on ANL Vesta, Bluegene Q

105.5

29.8

41

3.54x speed up

• ChaNGa

NAMD with colvar module on Blue Waters, Cray XE6

15.0

8.5

42

1.76x speed up

Summary

• We proposed new parallel constructs and OpenMP
integration with Charm++

• Solved load imbalance in intra-node level significantly

• In NAMD and ChaNGa, load imbalance in intra-node level is
mitigated significantly

• Even MPI application can benefit from this work with AMPI

43

THANK YOU!

44

