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Dynamic variations - Load imbalance

Persistent & Transient imbalance

Vast amounts of on-node parallelism
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Can we leverage multi-core shared 
memory systems to handle transient 
and persistent load imbalance while 
maintaining locality with low 
overhead?



INTEGRATED RTS
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New integrated run-time system that 
combines distributed programming 
model with concurrent tasks



INTEGRATED RTS
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Infrequent periodic balancing

+

Fine-grained work-sharing within the 
node 



TRANSIENT & 
RESIDUAL IMBALANCE
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cores cores



INTEGRATED RTS MODEL
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CHARM++ MODEL

Asynchronous Message-Driven 
Execution

Over-decomposition

Migratability
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OVER-DECOMPOSITION

Decompose work & data units to 
many more pieces than execution 
units 
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OVER-DECOMPOSITION

Encapsulation of data and its 
computation inherently promotes 
data locality
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MIGRATABILITY

Move work units to another 
execution unit at run time.
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CHARM++ SMP MODEL

Takes advantage of multi-core 
processors

Launches one thread per core
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CHARM++ SMP MODEL

Faster intra-node communication

Smaller memory footprint

Enables work-sharing within a node
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INTEGRATED RTS

Combines Charm++ over-
decomposition distributed memory 
model with concurrent tasks
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PERSISTENT & TRANSIENT 
LOAD BALANCE

Node-aware load balancers

Fine-grained work-sharing within the 
node
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LOAD BALANCING

Based on principle of persistence
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NODE-AWARE
LOAD BALANCING

Hierarchical strategy

Coarsening to reduce memory and 
communication overhead

Different strategies at different levels
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HIERARCHICAL 
LOAD BALANCER
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AUTOMATIC
LOAD BALANCING

RTS decides when to do load 
balancing

RTS decides which load balancer to 
use at each level
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FINE-GRAINED 
WORK-SHARING

User specified tasks that can be executed on 
any core within a node

Work-stealing queue

With RTS support incurs lesser overhead

CkLoop - Previous work-sharing construct in 
Charm++
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SCHEDULER SCHEDULER
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Core0 Core1

Message QueueMessage Queue

Task Queue Task Queue



TASK CREATION

Charm++ task API

OpenMP integration
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TASK GENERATION & 
SCHEDULING

Recursive

Broadcast task message

Only when idle

History
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RECURSIVE TASKS

Loop iterations split into half forms a 
task

Work-stealing queue to share work
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BROADCAST TASK MESSAGE

All the cores within a node receive 
broadcast message for a task

Atomically increments a variable to 
obtain the next chunk
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ONLY WHEN IDLE
An atomic counter to determine 
number of idle cores within a node

Selectively creates tasks depending on 
that counter

Adaptively control number of tasks 
generated
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HISTORICAL DATA

Historical data on fraction of the 
tasks executed locally

Use this data to determine number 
of tasks to be created
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Issues in the OpenMP interoperation 
with Charm++

• Resource contention  
– Oversubscription problem by separate Charm++ and OpenMP 

thread pool
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Charm++ threads

Hardware cores

OpenMP threads

# of hw cores = 4 < # of threads = 10  -> oversubscription



OpenMP integration into Charm++

• Use threads on Charm++ Runtime for OpenMP 
– Works on SMP mode of Charm++ 

• Each OpenMP task become a Charm++ runtime message 
– OpenMP tasks can be migrated among cores within a node 

– Used for transient load balancing within a node  

• Modified GNU OpenMP 4.0, forked from GCC 4.9.3
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SCHEDULER SCHEDULER
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OpenMP RTS

Core0 Core1

Message QueueMessage Queue

Task Queue Task Queue

#pragma omp parallel for 
for ( i = 0; i < n ; i++) { 
…  
}



Issues in naïve OpenMP integration

• Overheads of message creation 

– Too many messages are created 

– OpenMP tasks are created even when there is no idle 
thread on a node 

• Applied some optimizations to solve this 
overheads
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Optimizations to solve  
the overhead of naïve OpenMP integration

• Use an atomic counter 
– keep track of the number of idle threads within a node 

• Use a history vector 
– keep record of how many of the OpenMP tasks have 

been stolen and executed by the other idle threads 

• Combine these two heuristics to determine the 
number of messages to be created
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APPLICATIONS
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• Applications 
– ChaNGa 

• Charm++, Cosmology Simulation 
• Cosmo25 dataset is used  

(Highly clustered 2 billion particles dark simulation) 

– NAMD 
• Charm++, Molecular Dynamics simulation 
• Energy minimization run using collective variable module  

(270,000 atoms and 200,000 bonds) 
– Kripke 

• MPI, Deterministic Particle Transport proxy application 
• Benefit: multiple MPI ranks per node can each parallelize OMP regions across entire node if 

imbalanced 
• Described in the next talk on AMPI

Application Study
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Application Study

• Machines used for evaluation 

– ANL Vesta, Bluegene Q  
• 2048 nodes, PowerPC A2 1.6Ghz (16 cores, 64 threads) 

– NCSA Blue Waters, Cray XE/XK hybrid 
• 22,640 nodes for Cray XE 
• AMD interlagos 6276 (16 cores, 32 threads)
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Projection of ChaNGa with cosmo25 on Blue Waters, Cray XE6 
(128K cores) 
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Projection of ChaNGa with cosmo25 on Blue Waters, Cray XE6 
(128K cores) 
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• >>

ChaNGa with cosmo25 on Blue Waters, Cray XE6

2.84

1.40

1.28

2.21x speed up
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• ˆChaNGa

NAMD with colvar module on ANL Vesta, Bluegene Q

105.5

29.8
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3.54x speed up



• ChaNGa

NAMD with colvar module on Blue Waters, Cray XE6

15.0

8.5
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1.76x speed up



Summary

• We proposed new parallel constructs and OpenMP 
integration with Charm++ 

• Solved load imbalance in intra-node level significantly 

• In NAMD and ChaNGa, load imbalance in intra-node level is 
mitigated significantly 

• Even MPI application can benefit from this work with AMPI
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THANK YOU!
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