Performance Analysis and Projections

Ronak Buch

20 April 2016

Ronak Buch rabuch2@illinois.edu

"We must not allow the clock and the calendar to blind us to the fact that each moment of life is a miracle and mystery."

H.G. Wells

Ronak Buch rabuch2@illinois.edu

Each moment of life may be a mystery, but each moment of our programs shouldn't be.

Ronak Buch rabuch2@illinois.edu

Measuring Performance

In the serial world:

- clock_gettime(), gettimeofday()
- gprof
- valgrind

4/26

Ronak Buch rabuch2@illinois.edu

Measuring Performance

In the serial world:

- clock_gettime(), gettimeofday()
- gprof
- valgrind

Parallel These techniques don't really work for distributed parallel programs.

Problems in Parallel Analysis

- Different processors may do radically different work
- Performance problems may be on the network
- Load may not be balanced between processors

Parallel Analysis Tools

In general, tools must be used to do parallel performance analysis:

- mpiP
- Vampir
- HPCToolkit
- Projections

These tools provide details on communication, scaling, mapping, load imbalance, etc.

Projections

- Projections is a performance analysis tool for Charm++
- Provides tools for analyzing most of the discussed issues in parallel performance
- Runtime traces application executions, creates logs for local analysis

Ronak Buch rabuch2@illinois.edu

Ronak Buch rabuch2@illinois.edu

Performance Analysis and Projections

Ronak Buch rabuch2@illinois.edu

Ronak Buch rabuch2@illinois.edu

Performance Analysis and Projections

Ronak Buch rabuch2@illinois.edu

Performance Analysis and Projections

Ronak Buch rabuch2@illinois.edu

Performance Analysis and Projections

Ronak Buch rabuch2@illinois.edu

Performance Analysis and Projections

Recent Advancements in Projections

Recently, we have added some advanced analysis tools to Projections:

- Cache latency measurement
- Communication thread tracing

Cache Latency Measurement

Using sampling techniques, we have developed a method to trace cache accesses and attribute them to specific lines.

- Intel PEBS Precise Event Based Sampling
- Provides instruction pointer with sample
- Provides latency of access, not mere hit/miss count

Cache Latency Measurement

Collected data allows us to analyze:

- Spatiotemporal memory access pattern and latency
- Cache miss rate over time
- Cache latency per source line

Cache Performance Tools

Ronak Buch rabuch2@illinois.edu

Performance Analysis and Projections

¹⁸/26

Cache Performance Tools

Ronak Buch rabuch2@illinois.edu

Performance Analysis and Projections

Cache Performance Tools

300								380		
nod	le-Suser	d = true-						wasNeg = true		
	nouce about = a aco									
#er	#endif							#endir		
// A	// Always open node if this many particles or fewer.							#endif		
const int nMinParticleNode = 6:							}			
	Wands - monthale Count - and In Double levie day (
n(n	<pre>infnode>particleCount < = nMinParticleNode) { return 1: } }</pre>									
retu								virtual ~ GenericTreeNode() { }		
3								virtual void fullyDelete() = 0;		
11										
// N	// Note that some of this could be pre-calculated into an "opening radius"							inline NodeType getType() const { return myType; }		
double radius = TreeStuff::opening geometry factor * node->moments.radius / theta:								inline void setType(NodeType t) { myType = t; }		
iffers	adine -	node >m	omente re	adiue)				· · · · · ·		
	omoriu	Accord Lal	top cu /	/ / /charmBoach/	haE /coocific /chappan /C	That Canadata				
M Bee	emory A	Access La	cency/.		ogo/specific/changa/c	changa.prj.scs		I Inline NodeKey detKey() const.(return key; }		
le Color S	Scheme	Save To	Image				- 8	800		
atency Pe	er Entry	Method	Latency	Per Instruction Po	inter Histogram Plo	t	_ [aniono outrati		
nstruction F	Pointer	File 1	Vame	Line Number	Number of samples	Source Code		}		
6307d0		gravity.h		664	89		-			
62fdfc		GenericTre	eNode.h	161	59					
(7f325bc5b0	Dab	(a		0	55			unsigned int numChildren() const {		
630804		vector3D.h	1	115	49			return 2;		
560bal		GenericTre	eNode b	360	30			1		
6307dd		gravity.h		669	34			1		
7f325bc5b0	0c6				31					
6341bc		Vector3D.h		115	20		H	GenericTreeNode* getChildren(int i) {		
k634afd		Vector3D.h		115	19			Chaccert(is=0.8-8-i < 2)		
x013000 x7f325hc5b6aa		0		0	13					
6130b3	Buo			0	11			return children[i];		
6341f4		Vector3D.h	1	115	9			}		
613060					9					
6130a5				0	8					
(/r325bc5af	182			0	/			void setChildren(int i, GenericTreeNode* node) {		
7f325h0030	046			0	6					
634a82		ParallelGra	wity.h	1840	5					
61321a				0	4					
63532e		Compute.C		1427	4					
6341d8		Vector3D.h	1	115	3					
62ca5b		TreeWalk.C		345	3					
3534440		gravity.h		293	3					
		OL	1 Cache Hi	its OL2 Cache Hits	CLC cache Hits		_			
			ι	Jpdate Source Loca	ation					
		Sele	ect New R	ange Total sampl	es received: 488111			20		

Ronak Buch rabuch2@illinois.edu

When Charm++ is used in SMP mode, every process has a communication thread. When built with --enable-tracing-commthread, the runtime will specifically trace this thread.

Using these logs, we can analyze network performance in detail.

Ronak Buch rabuch2@illinois.edu

23/26

Ronak Buch rabuch2@illinois.edu

Ronak Buch rabuch2@illinois.edu

Performance Analysis and Projections

26

Future work:

- Identify communication thread oversubscription
- Estimate runtime given ideal network
- Use topology and routing information to identify network hotspots

Conclusion

- Performance analysis tools are *critical* for optimizing HPC applications
- Detailed metrics (performance counters, network delay, etc) can provide insight
- Make performance problems as obvious as possible
- Make it possible for users to write *ad hoc* analysis tools

Thanks

Ronak Buch rabuch2@illinois.edu