
Sangmin	Seo

Assistant	Computer	Scientist
Argonne	National	Laboratory

sseo@anl.gov

April	19,	2016

Argobots and its Application to Charm++

Charm++	Workshop	2016



Argo Concurrency Team

• Argonne	National	Laboratory	(ANL)
– Pavan Balaji (co-lead)
– Sangmin	Seo
– AbdelhalimAmer
– Marc	Snir
– Pete	Beckman	(PI)

• University	of	Illinois	at	Urbana-Champaign	(UIUC)
– Laxmikant Kale	(co-lead)
– Prateek Jindal
– Jonathan	Lifflander

• University	of	Tennessee,	Knoxville	(UTK)
– George	Bosilca
– Thomas	Herault
– Damien	Genet

• Pacific	Northwest	National	Laboratory	(PNNL)
– Sriram Krishnamoorthy

Past	Team	Members:
• Cyril	Bordage (UIUC)
• Esteban	Meneses

(University	of	Pittsburgh)
• Huiwei Lu	(ANL)
• Yanhua Sun	 (UIUC)

Charm++	Workshop	2016 2



Massive On-node Parallelism

• The	number	of	cores	is	increasing
• Massive	on-node	parallelism	is	inevitable
• Existing	solutions	do	not	effectively	deal	with	such	parallelism	with	

respect	to	on-node	threading/tasking	systems	or	with	respect	to	
off-node	communication	in	the	presence	of	such	tasks/threads

• How	to	exploit?

core

Core-level	Parallelism
3Charm++	Workshop	2016



Shortcomings today? Pthreads (1/2)

Nesting

int in[1000][1000], out[1000][1000]; 

#pragma omp parallel for

for (i = 0; i < 1000; i++) {

petsc_voodoo(i);

}

petsc_voodoo(int x)

{

#pragma omp parallel for

for (j = 0; j < 1000; j++)

out[x][j] = cosine(in[x][j]);

}

Execution	time	for	36	threads	in	the	outer	loop

Why	is	traditional	OpenMP’s performance	so	bad?		The	
compiler	cannot	analyze	petsc_voodoo to	know	whether	
the	function	might	ever	block	or	yield,	so	 it	has	to	assume	
that	it	might.		Therefore	a	stack	is	needed	to	facilitate	it.		
Creating	additional	Pthreads for	each	nesting	is	the	
simplest	way	to	achieve	this.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Ti
m
e	
(s
)

#	OMP	Threads	|	Argobots	ULTs/tasks	(inner	loop)

GCC/pthreads GCC/Argobots	ULTs GCC/Argobots	tasks

Lower	is	
better

Charm++	Workshop	2016 4



Shortcomings today? Pthreads (2/2)

Tasks	of	application	mapped	to	a	group	of	Pthreads

Need	lightweight	mechanisms	to	switch	tasks!
computation

communication

C

Pthreads

C C C

map	&	schedule

How	about	these	communications?
Wait	or	context	switch?

Work	units	intermixed	
with	blocking	calls	 (such	
as	communication	 calls)	
can	cause	idle	cores

Charm++	Workshop	2016 5



Outline

• Background
• Argobots
• Charm++	with	Argobots
• Other	Programming	Models
• Summary

Charm++	Workshop	2016 6



User-Level Threads (ULTs)

• What	is	user-level	thread	(ULT)?
– Provides	thread	semantics	in	user	space
– Execution	model:	cooperative	timesharing

• More	than	one	ULT	can	be	mapped	to	a	single	kernel	
thread

• ULTs	on	the	same	OS	thread	do	not	execute	concurrently
• Where	to	use?

– To	better	overlap	computation	and	communication/IO
– To	exploit	fine-grained	task	parallelism

tim
eline

Context 
switch

Context 
switch

ULT1

ULT2

Core Core Core Core Core Core Core Core

ULTs :

Kernel threads :

Charm++	Workshop	2016 7



Pthreads vs. ULTs

• Average	time	for	creating	and	joining	one	thread
• pthread:	6.6us	- 21.2us	(avg.	34,953	cycles)
• ULT	(Argobots):	78ns	- 130ns	(avg.	191	cycles)
• ULT	is	64x	- 233x	faster than	Pthread

– How	fast	is	ULT?
• L1$	access:	1.112ns,	L2$	access:	5.648ns,	memory access:	18.4ns
• Context switch (2	processes):	1.64us

1

10

100

1000

10000

100000

1 2 4 8 16 32 64 128 256 512 1024 2048

Av
g.
	Cr
ea
te
&
Jo
in
Ti
m
e/
th
re
ad

	
(n
s)

Number	of	Threads

pthread ULT	(Argobots)

*	measured	using	LMbench3

Charm++	Workshop	2016 8



Growing Interests in ULTs

• ULT	and	task	libraries
– Converse	threads,	Qthreads,	MassiveThreads,	Nanos++,	

Maestro,	GnuPth,	StackThreads/MP,	Protothreads,	Capriccio,	
StateThreads,	TiNy-threads,	etc.

• OS	supports
– Windows	fibers,	Solaris	threads

• Language	and	programming	models
– Cilk,	OpenMP task,	C++11	task,	C++17	coroutineproposal,		

Stackless Python,	Go	coroutines,	etc.

• Pros
– Easy	to	use	with	Pthreads-like	interface

• Cons
– Runtime	tries	to	do	something	smart	(e.g.,	work-stealing)
– This	may	conflict	with	the	characteristics	and	demands	of	

applications

Charm++	Workshop	2016 9



Argobots

Overview
• Separation	of	mechanisms	and	policies
• Massive	parallelism

– Exec.	Streams guarantee	progress
– Work	Units execute	to	completion

• User-level	threads	(ULTs)	vs.	Tasklet
• Clearly	defined	memory	semantics

– Consistency	domains
• Provide	Eventual	Consistency

– Software	can	manage	consistency

Argobots Innovations
• Enabling	technology,	but	not	a	policy	maker

– High-level	languages/libraries	such	as	
OpenMP,	Charm++	have	more	
information	about	the	user	application	
(data	locality,	dependencies)

• Explicit	model:	
– Enables	dynamism,	but	always	managed	

by	high-level	systems

Argobots

coreProcessor

Programming Models
(MPI, OpenMP, Charm++, PaRSEC, …)

U User-Level Thread T TaskletLightweight
Work Units

E
xe

cu
tio

n 
S

tre
am

Private pool Private poolShared pool

U U

U T

TTU TU

E
xe

cu
tio

n 
S

tre
am

E
xe

cu
tio

n 
S

tre
am

A	low-level	lightweight	threading	and	tasking	framework
(http://collab.cels.anl.gov/display/argobots/)

*	Team	members:	Sangmin Seo,	Abdelhalim Amer,	Pavan Balaji (ANL),	Laxmikant Kale,	Prateek Jindal	(UIUC)

Charm++	Workshop	2016 10



Argobots Execution Model

• Execution	Streams	(ES)
– Sequential	instruction	stream

• Can	consist	of	one	or	more	work	units
– Mapped	efficiently	to	a	hardware	

resource
– Implicitly	managed	progress	semantics

• One	blocked	ES	cannot	block	other	ESs

• User-level	Threads	(ULTs)
– Independent	execution	units	in	user	

space
– Associated	with	an	ES	when	running
– Yieldable	and	migratable
– Can	make	blocking	calls

• Tasklets
– Atomic	units	of	work
– Asynchronous	completion	via	

notifications
– Not	yieldable,	migratable	before	

execution
– Cannot	make	blocking	calls

S

Scheduler Pool

U

ULT

T

Tasklet

E

Event

ES1 Sched

U

U

E

E

E

E

U

S

S

T

T

T

T

T

Argobots Execution Model

...

ESn

• Scheduler
– Stackable	scheduler	with	pluggable	

strategies
• Synchronization	primitives

– Mutex,	condition	variable,	barrier,	 future
• Events

– Communication	triggers

Charm++	Workshop	2016 11



Explicit Mapping ULT/Tasklet to ES

• The	user	needs	to	map	work	units	to	ESs
• No	smart	scheduling,	no	work-stealing	unless	the	user	wants	

to	use

ES1

U0

U1

T1

T2

U2

U3

ES2

U4

U5

• Benefits
– Allow	locality	optimization

• Execute	work	units	on	the	same	ES

– No	expensive	lock	is	needed	
between	ULTs	on	the	same	ES

• They	do	not	run	concurrently
• A	flag	is	enough

Charm++	Workshop	2016 12



Stackable Scheduler with Pluggable Strategies

• Associated	with	an	ES
• Can	handle	ULTs	and	tasklets
• Can	handle	schedulers

– Allows	to	stack	schedulers	hierarchically
• Can	handle	asynchronous	events
• Users	can	write	schedulers

– Provides	mechanisms,	not	policies
– Replace	the	default	scheduler

• E.g.,	FIFO,	LIFO,	Priority	Queue,	etc.
• ULT	can	explicitly	yield	to another	ULT

– Avoid	scheduler	overhead

Sched

U

U

E

E

E

E

U

S

S

T

T

T

T

T

U S U U U

yield() yield_to(target)

Charm++	Workshop	2016 13



Performance: Create/Join Time

• Ideal	scalability
– If	the	ULT	runtime	is	perfectly	scalable,	the	time	should	be	the	same	

regardless	of	the	number	of	ESs

10

100

1000

10000

1 2 4 8 16 24 32 36 40 48 56 64 72

Cr
ea
te
/Jo

in
	T
im
e	
pe
r	U

LT
	(c
yc
le
s)

Number	of	Execution	Streams	(Workers)

Qthreads MassiveThreads	 (H) MassiveThreads	 (W)

Argobots	(ULT) Argobots	(Tasklet)

Charm++	Workshop	2016 14



Jonathan	Lifflander,	Prateek Jindal,	Yanhua Sun
Laxmikant Kale

University	of	Illinois	at	Urbana-Champaign	(UIUC)

Charm++ with Argobots

15Charm++	Workshop	2016



Charm++ with Argobots

• Goals
– Test	the	completeness	and	performance	of	Argobotswith	

Charm++	programming	model
– Take	advantage	of	Argobots features	(tasklets,	stackable	

schedulers,	etc.)	without	modifying	application	codes
– For	Charm++	applications,	interoperate	with	applications	

written	in	other	models	(MPI,	Cilk,	etc.)

16

Mini-apps and real world applications

Charm++ model

Converse runtime
(threading, messaging, scheduler)

Communication libraries (MPI, uGNI, PAMI, Verbs)

Intelligent runtime

Argobots
(ULTs, Tasks, scheduling, etc.)

Charm++ infrastructure Charm++ with Argobots 
*	Team	members:	Laxmikant	Kale,	Jonathan	Lifflander,	 PrateekJindal	 (UIUC)

Charm++	Workshop	2016



Replacing the Converse Runtime with Argobots

• Converse	
– The	active	messaging	layer	in	Charm++

• Approaches
– Each	Charm++	Pthread inside	a	node	(including	the	communication	

thread)	is	implemented	as	an	Argobots ES
• Create	an	ES	for	every	Converse	instance

– A	custom	Argobots scheduler	is	created	instead	of	using	the	Converse	
scheduler

– Converse	messages	are	enqueued into	Argobots pools	as	tasklets
– Converse	threads	(CthThread)	are	implemented	on	top	of	Argobots

ULTs,	with	conditional	variables	to	implement	suspend/resume

• Only	180	lines	of	code	had	to	be	changed!

Charm++	Workshop	2016 17

Converse runtime
(threading, messaging, scheduler)

Argobots
(ULTs, Tasks, scheduling, etc.)



LeanMD Performance: Runtime Comparison

Charm++	Workshop	2016 18

• Evaluation	machine
– 2	x	Intel	Xeon E5-2699	v3	(2.30GHz):	36	cores (72	threads)

• LeanMD simulation
– A	total	of	20	steps	on	a	cell	array	of	dimensions	7x7x7
– 1-away	XYZ	configuration	and	1000	atoms	per	cell

Achieved	comparable	performance	although	 it	is	a	very	simple	implementation



LeanMD Performance: Manual Implementation

Charm++	Workshop	2016 19

• Manual	implementation	 of	LeanMD using	the	Argobots
– Exploited	both	ULTs	and	tasklets

• A	ULT	for	managing	a	cell	and	a	tasklet for	managing	the	interaction	between	cells
– Used	futures	for	the	waiting	mechanism
– Work	stealing	between	pools

• Better	performance	of	our	manual	implementation	 implies	 that	Charm++	with	
Argobots could	be	improved



Argobots: Interfaces for Shrink/Expand Events

20

ES0

Sched

ES1

Sched

ES2

Sched NRM

ESn-1

Sched
...

E

E

E

Argobots

socket

Charm++	 CilkBot PaRSECMPI+Argobots

programming	model	runtimes	and	applications

callback	functions

1. [Argobots]	Connect	to	NRM	using	a	socket	on	ABT_init()
2. [Runtimes/applications]	Register	callback	functions	for	shrink/expand	events
3. [Runtimes/applications]	Deregister	callback	functions	when	they	terminate
4. [Argobots]	Disconnect	from	NRM	on	ABT_finalize()

ABT_ENV_POWER_EVENT_HOSTNAME
ABT_ENV_POWER_EVENT_PORT

ABT_event_add_callback()
ABT_event_del_callback()

Charm++	Workshop	2016



Argobots: Shrink/Expand Event Handling

• Shrinking

21

ES0

Sched

ES1

Sched

ES2

Sched

E E E

prog.	model	 runtime/application

1. ES1 picks	an	event,	which	requests	ES2 to	be	stopped
2. Ask	the	runtime	using	callbacks	whether	ES2 can	be	stopped
3. If	OK,	mark	ES2 to	need	to	stop	so	when	the	scheduler	on	ES2 checks	events,	

it	can	be	stopped
4. Notify	the	runtime	that	ES2 will	be	stopped
5. Create	a	ULT	on	ES0
6. When	the	scheduler	on	ES2 stops,	ES2 is	terminated	
7. After	ES2 is	terminated,	the	ULT	frees	ES2 and	sends	a	response	to	NRM

- Any	scheduler	 on	any	ES	
can	check	and	handle	 events
- ES0 cannot	be	stopped

U

1
2

3

4

5
NRM

7

6

Charm++	Workshop	2016



Argobots: Shrink/Expand Event Handling

• Expanding

22

ES0

Sched

ES1

Sched

ES2

Sched

E E E

prog.	model	 runtime/application

1. ES0 picks	an	event,	which	requests	to	create	an	ES2
2. Ask	the	runtime	using	callbacks	whether	it	can	create	ES2
3. If	OK,	invoke	a	callback	function	so	the	runtime	creates	ES2
4. Create	ES2
5. Send	a	response	to	NRM

1 2 3

5
NRM

4

Charm++	Workshop	2016



Charm++ with Argobots: Implementation

• Shrink/Expand	Implementation
– Charm++	maintains	a	set	of	pools	for	each	scheduler,	
mapped	to	an	ES

– Ranks	in	Charm++	are	virtualized	by	saving	the	mapping	of	
pool	to	an	ES

– When	an	ES	is	removed,	the	associated	pools	are	put	into	a	
global	list

• To	maintain	correctness	in	Charm++,	the	rank	of	any	tasks/threads	
in	the	global	list	are	derived	from	the	pool	(ranks	are	virtualized)

– Shrink
• Other	ESs	execute	work	units	from	orphaned	pools	with	some	
added	synchronization	

– Expand
• A	new	ES	is	created	and	takes	over	a	set	of	orphaned	pools

23Charm++	Workshop	2016



LeanMD Results of Shrinking/Expanding ESs

Charm++	Workshop	2016 24



Argobots Ecosystem

ES1 Sched

U

U

E

E

E

E

U

S

S

T

T

T

T

T

Argobots

...

ESn

MPI+Argobots

ULT

ES

ULT

ES

MPI

Argobots  runtime

Communication 
libraries

Charm++

Applications

Charm++	
Cilk “Worker”

Argobots	ES

RWS	ULT

Fused	ULT	1

Fused	ULT	2

Fused	ULT	N

…
CilkBots

PO

GE

TR

SYTR TR

PO GE GE

TR TR

SYSY GE

PO

TR

SY

PO

SY SY

PaRSEC

OpenMP Mercury	RPC

Origin

Target

RPC	proc

RPC	proc

OmpSs

GridFTP,	Kokkos,	RAJA,	ROSE,	TASCEL,	XMP,	etc.External	
Connections

Charm++	Workshop	2016 25



Summary

• Massive	on-node	parallelism	is	inevitable
– Need	runtime	systems	utilizing	such	parallelism

• Argobots
– A	lightweight	low-level	threading/tasking	framework
– Provides	efficient	mechanisms,	not	policies,	to	users	(library	

developers	or	compilers)
• They	can	build	their	own	solutions

• Charm++	with	Argobots
– Implemented	by	replacing	the	Converse	runtime	with	Argobots
– Achieved	comparable	performance	on	LeanMD
– Incorporated	the	shrinking/expanding	of	ESs	in	Argobots in	

order	to	respond	to	the	external	events	(e.g.,	power	capping)

Charm++	Workshop	2016 26



Try Argobots

• git repository
• http://git.mcs.anl.gov/argo/argobots.git/

• Documentation
– Wiki

• https://collab.cels.anl.gov/display/ARGOBOTS/

– Doxygen
• http://www.mcs.anl.gov/~sseo/public/argobots/

Charm++	Workshop	2016 27



Funding Acknowledgments
Funding	Grant	Providers

Infrastructure	Providers

Charm++	Workshop	2016



Programming Models and Runtime Systems Group
Group	Lead
– Pavan	Balaji	(computer	scientist	and	group	

lead)

Current	Staff	Members
– Abdelhalim Amer (postdoc)
– Yanfei Guo (postdoc)
– Rob	Latham	(developer)
– Lena	Oden	(postdoc)
– Ken	Raffenetti (developer)
– Sangmin Seo (assistant	computer	scientist)
– Min	Si	(postdoc)
– Min	Tian	(visiting	scholar)

Past	Staff	Members
– Antonio	Pena	(postdoc)
– Wesley	Bland	(postdoc)
– Darius	T.	Buntinas (developer)
– James	S.	Dinan (postdoc)
– David	J.	Goodell (developer)
– Huiwei Lu	(postdoc)
– YanjieWei	(visiting	scholar)
– Yuqing Xiong (visiting	scholar)

– Jian	Yu	(visiting	scholar)

– Junchao Zhang	(postdoc)

– Xiaomin Zhu	(visiting	scholar)

– AshwinAji (Ph.D.)
– Abdelhalim Amer (Ph.D.)
– Md.	Humayun Arafat	(Ph.D.)
– Alex	Brooks	(Ph.D.)
– Adrian	Castello (Ph.D.)
– Dazhao Cheng	(Ph.D.)
– James	S.	Dinan (Ph.D.)
– Piotr Fidkowski (Ph.D.)
– Priyanka	Ghosh	(Ph.D.)
– SayanGhosh (Ph.D.)
– Ralf	Gunter	(B.S.)
– Jichi Guo (Ph.D.)
– Yanfei Guo (Ph.D.)
– Marius	Horga (M.S.)
– John	 Jenkins	(Ph.D.)
– Feng Ji (Ph.D.)
– Ping	Lai	(Ph.D.)
– Palden Lama	(Ph.D.)
– Yan	Li	(Ph.D.)
– Huiwei Lu	(Ph.D.)
– Jintao	Meng (Ph.D.)
– Ganesh	Narayanaswamy (M.S.)
– Qingpeng Niu (Ph.D.)
– Ziaul Haque Olive	(Ph.D.)
– David	Ozog (Ph.D.)

– Renbo Pang	(Ph.D.)
– Sreeram Potluri (Ph.D.)
– Li	Rao (M.S.)
– Gopal Santhanaraman (Ph.D.)
– Thomas	Scogland (Ph.D.)
– Min	Si	(Ph.D.)
– Brian	Skjerven (Ph.D.)
– Rajesh	Sudarsan (Ph.D.)
– Lukasz	Wesolowski (Ph.D.)
– Shucai Xiao	(Ph.D.)
– Chaoran Yang	(Ph.D.)
– Boyu Zhang	(Ph.D.)
– Xiuxia Zhang	(Ph.D.)
– Xin	Zhao	(Ph.D.)

Advisory Board
– Pete	Beckman	(senior	scientist)
– Rusty	Lusk	 (retired,	STA)
– Marc	Snir (division	director)
– Rajeev	Thakur	 (deputy	director)

Current and	Recent	Students

Charm++	Workshop	2016



Q&A

§ Thank	you	for	your	attention!

Questions?

Charm++	Workshop	2016


