OpenAtom: On the fly ab initio molecular dynamics on the ground state surface with instantaneous GW-BSE level spectra

PIs: G.J. Martyna, IBM; S. Ismail-Beigi, Yale; L. Kale, UIUC;
Team: Q. Li, IBM, M. Kim, Yale; S. Mandal, Yale;
E. Bohm, UIUC; N. Jain, UIUC; M. Robson, UIUC;
E. Mikida, UIUC; P. Jindal, UIUC; T. Wicky, UIUC.

Outline:

- I. Introduction to the OpenAtom project
- II. Statistical sampling of complex systems on the ground state surface
- III. Optimization under charm++
- IV. GW-BSE a new charm++ application.

IBM : A History of Multidisciplinary Research

1957 FORTRAN (Program lang)

1956 RAMAC (comput. w. mag. disk)

"Treasure wild ducks" James Watson, Jr.

(from Kierkegaard) www-03.ibm.com/ibm/history/ibm100/us/en

Exploratory work: Yorktown, Almaden & Zurich 2012 Excimer Laser Surgey (Nation Medal of Technology) 2009 Nano MRI 2008 World's First Petaflop Supercomputer 2006 Francis Allen: 1st Female Turing Award winner & 1st Female IBM Fellow 2005 Cell Architecture 2004 Blue Gene (National Medal of Technology) 2003 Carbon Nanotube Transistors **1997 Copper Interconnect Wiring** 1994 Silicon Germanium (SiGe) 1987 High-Temperature Superconductivity (**Nobel Prize**) 1986 Scanning Tunneling Microscope (Nobel Prize) **IBM's Watson Cognitive Computer** 1980 RISC **1971 Speech Recognition** 1970 Relational Database \$21,440 \$5,600 **1967 Fractals** BRAD 1966 One-Device Memory Cell 1965 FFT (Cooley and Tukey).

D. Ferrucci

3

Wild Duck

Where is IT today and where is it going?

IT industry has driven giant productivity gains in the last 40 years – are we done?

Power: A Cause for Concern

- Power is limiting progress in the IT world CMOS has reached fundamental limits.
- Data-centric: communication is expensive.
- Dark silicon/on-chip power savings will not deliver enough savings -Microsoft Project Natick – underwater data centers!!!!!! (projectnatick.com)
- Sensor revolution requires on-board low-power computing to preprocess data avoiding power cost of wireless communication.

Wireless Communication and Radar: New demands for high performance

- The spectrum is congested and/or contested.
- Higher performance electronics for agile radars and communications are needed to move forward - RF FPGA's

New efficient methodology and implementations required for progress!

Philosophy: Statistical Sampling of Complex Environments is Key to Understanding many Physical Systems across Science and Solutions

• Biological function is enabled by fluctuations in both the environment and the biomolecules.

Pollutant detection requires sampling complex sampling complex aqueous systems and then exporting the results to a GW/GW-BSE app for computation of spectra.

• Understanding chemical reactions in dense arrays requires non-trivial sampling of the full system due to complex many-body reaction paths.

Simulating materials with atomic detail on the Ground State Born-Oppenheimer Surface: Reaching Long Time Scales via Parallel Software and Novel Physics Based Methodology

PI: Glenn Martyna, IBM TJ Watson Research Center, Honorary Professor of Physics, University of Edinburgh, 2016 IPAM Senior Fellow
Postdoc: Qi Li, IBM TJ Watson Research Center

Goal : The accurate treatment of complex heterogeneous systems to gain physical insight.

Where we were at the start of the project from previous collaboration with Kale group:

OpenAtom

Charm++ implementation of the Car Parinello Ab initio Molecular Dynamics based on KS-DFT within Generalized Gradient Approx.

<u>Features include:</u>

- Order *N*² log(*N*) Euler Exponential Spline (EES) method for norm conserving non-local pseudopotentials.
- Order *N* log(*N*) EES method for local pseudopotential and Ewald interactions.
- High parallel scaling on BlueGene/L and BlueGene/P (10k procs).
- Roughed in path Integrals, k-point sampling, LSDA and parallel tempering sampling.
- Parallel 3D-FFTs handwritten by scientists.

Great for main group systems, achieve nanosecond time scalesa breakthrough in its day (just a few years ago)! IBM Journal of Research and Development 52 (1.2), 159-175 (2008). 8

Transparent Conducting Electrodes (TCEs) for thin film amorphous silicon solar cells

Engineering goal

Experimental data: G. Tulevski (IBM), A. Kasry (EGNC), A. Boll (IBM) ACS nano 4 (7), 3839-3844 (2010)

$6SbCl_{5} + C_{84} \rightarrow C_{84}^{2+}(2SbCl_{6}^{-}) + SbCl_{3} + 3SbCl_{5}$

ACS nano 5 (4), 3096-3103 (2011)

Project Goals: Improve sampling, accuracy, applicability and parallel performance of OpenAtom to achieve breakthrough performance

Transition Metals: Plane Augmented Wave method, LSDA, k-point sampling.
Reactive Chem: Hybrid functionals (beyond GGA) – Exact exchange (HF).
Nuclear Quantum Effects: Path Integral Molecular Dynamics.
Sampling Rough Energy Landscapes: Parallel tempering (PT).
Metric Factors : Improve baseline CPAIMD with phase space metrics (PSM).
Extension to Analytics: Use power of OpenAtom in Discovery Projects.

Addressing complex systems and sampling problems requires significant collaborative development!!!!

Project Goals: Improve sampling, accuracy, applicability and parallel performance of OpenAtom

UIUC tasks:

- 3D-FFT library beyond GJM.
- Flow of control refactor.
- Bringing Tempering, Path integrals, k-points, LSDA to life "Übers".
- Parallelization of "Übers".
- GPGPUs for orthogonality.
- Parallelization of "Advanced methods" (PAW, HF, PSM, ...).

IBM tasks:

- Derive order $N^2 \log(N)$ PAW.
- Implement Grimme van der Waals.
- Derive reduced order HF exch.
- Derive selection rule for parallel tempering on sampled potential surfaces penalty method.
- Derive improved CPAIMD via PSM.
- Write toy codes and scientific papers.

Joint work:

- Framework new methods.
- Implement new methods.
- Develop test suite for new methods implement in OpenAtom's Jenkins app.
- Apply OpenAtom to important systems across S&T .e.g. Metal Organic Framework with Yale & UIUC.

Hero System ¹³

Reduced order Hartree-Fock Exchange for Extended States – in 3 minutes or less

Challenge: Reduced order methods for HF exchange are all formulated for localized states. Metal-insulator transitions, Metal-Semiconductor-Metal junctions → "no-go".

Solution: A collaboratively developed **r**-space outer product formulation motivates a new **r**-space/**g**-space decomposition to reduce HF exch. computational complexity by $N^{2/3}$, $N^3 \rightarrow N^{7/3}$ for the plane-wave (pw) basis.

The proof – in a nutshell (2 slides) $E \downarrow x = -1/2 \int D(h) \uparrow dr \int D(h) \uparrow dr' \sum n \uparrow HF \text{ exch. under PBC:}$ $f(r,r\uparrow')/|r-r\uparrow'+mh|$ sum over periodic

 $\rho(\mathbf{r},\mathbf{r}\uparrow) = \sum_{i \ni occ} \widehat{}_{i} \varphi_{i}\uparrow (\mathbf{r}\uparrow) \varphi_{i}(\mathbf{r})$ $f(\mathbf{r},\mathbf{r}\uparrow) = |\rho(\mathbf{r},\mathbf{r}\uparrow)|\uparrow 2$

Outer product of orbitals on the discrete pw mesh $\sim N^3$.

images, *m*.

 $1/r = \operatorname{erf}(\alpha r)/r + \operatorname{erfc}(\alpha r)/r$ Following Ewald insert long/short-range decomp. of Coulomb interaction.

$$E \downarrow x \uparrow (\text{short}) = -1/2 \int D(\mathbf{h}) \uparrow d\mathbf{r} \int D(\mathbf{h}) \uparrow d\mathbf{r}' f(\mathbf{r}, \mathbf{r} \uparrow') \operatorname{erfc}(\alpha | \mathbf{r} - \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | f(\mathbf{r}, \mathbf{r} \uparrow') | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | \mathbf{r} - \mathbf{r} \uparrow' + \mathbf{n} \mathbf{h} | \mathbf{r} - \mathbf{r} \uparrow' | \mathbf{r} - \mathbf{r} \uparrow$$

The proof – in a nutshell (2 slides)

Simplify* and introduce matrices on coarse, $f \downarrow c$, and fine $f \downarrow f$, meshes: $E \downarrow x \uparrow (\text{short}) = -1/2 \iint \uparrow @ d R d u f \downarrow f (R + u/2, R - u/2) \operatorname{erfc}(\alpha | u|)/|u| \theta \downarrow H (U \downarrow c - |u|)$

 $E \downarrow x \uparrow (\text{long}) = -\frac{1}{2V} \sum g \neq 0 \uparrow |g| < G \downarrow c \quad \text{$\|4\pi/|g||^2} \exp(-|g||^2/4)$ $f \downarrow c \quad (g,g) + \frac{\pi}{2V\alpha^2} \quad f \downarrow c \quad (0,0)$ $f \downarrow c \quad (g,g) \uparrow = \int D(h) \uparrow \text{$\|dr| f| dr| f| exp(ig \cdot r) exp(-ig) \uparrow \cdot r^2}$ $f \downarrow c \quad (r,r) \uparrow_{\text{FF}} \uparrow_{\text{S}}$

 $f \downarrow f (\mathbf{R} + \mathbf{u}/2, \mathbf{R} - \mathbf{u}/2) \text{ create sparse-matrix on fine mesh: } N^2 U \downarrow c \uparrow 3 \sim N^2 a$ $f \downarrow c (\mathbf{r}, \mathbf{r}') \qquad \text{Create dense-matrix on coarse mesh: } N^3 G \downarrow c \uparrow 6 \sim N^3 a$ $\alpha \sim N^2 - 1/9 \qquad \text{Choose } \alpha \text{ to equalize scaling: } N^{7/3} \text{ (add log } N \text{ for FFT's)}$ $\sum_{n \neq m} f = \frac{1}{\det n} p (\mathbf{r} + \mathbf{m}h) = \frac{1}{\det(h)} \sum_{n \neq m} f = \frac{1}{\det(n)} p (\mathbf{g}) e^{\hat{\mathbf{r}}_{i} \mathbf{g} \cdot \mathbf{r}}, V = \det(h), \mathbf{g} = \mathbf{g}h$ $\sum_{n \neq m} f = \frac{1}{\det(h)} p (\mathbf{g}) e^{\hat{\mathbf{r}}_{i} \mathbf{g} \cdot \mathbf{r}}, V = \det(h), \mathbf{g} = \mathbf{g}h$

Reduced order Hartree-Fock Exchange: Scaling

Complexity of short-range part governed by cutoff radius in **u**-space through $erfc(\alpha |\mathbf{u}|)$, $|\mathbf{u}| < U \downarrow c \uparrow \sim \alpha \uparrow -1$

 $N^{12} U^{\downarrow}c^{13} \sim N^{12} \alpha^{1-3}$

Complexity of long-range part governed by cutoff radius in g-space through $\exp(-|g|^2/4\alpha^2)$, $|g| < G\downarrow c\uparrow \sim \alpha\uparrow$ [1] $N(VG\downarrow c\uparrow 3)\uparrow 2 \sim N\uparrow 3\alpha\uparrow 6$ Equating gives

$$\alpha \sim N \hat{1} - 1/9$$

which in turn yields the desired scaling of the short/long-range parts $\sim N^2 + 1/3 = N^2/3$

[1] A plane wave basis with cutoff $G\downarrow c$ contains $\sim VG\downarrow c\uparrow 3$ basis functions where

Reduced order Hartree-Fock Exchange: Accuracy

- Short-range HF exchange requires treating an integrable singularity (Coulomb)
- The plane wave mesh is equally spaced in Cartesian coordinates.
- Develop a method to treat integrable singularities on simple meshes.

Reduced order Hartree-Fock Exchange: Sizing

System of interest : 32 water molecules under ambient conditions in

a L=9.86 Å on edge cell with a 70 Ry pw cutoff sets the fine pw grid to be ≈ 100 points on edge.

Take: (1) the fine grid u-space cutoff: $U\downarrow c = 3.5/\alpha$ (2) the sparse grid g-space cutoff: $G\downarrow c = 7\alpha$

Choose: $\alpha = 21.5/L$

Estimate: New method saves \approx 70x compared a N^3 computation (.i.e. **g**-space treatment on the fine pw grid, lim $\alpha \rightarrow \infty$).

Validate: Cutoff choices and timing estimates need testing in the "real world" where overhead, truncation error etc. matter.

Progress towards project goals

UIUC tasks:

- 3D-FFT library beyond GJM.
- Flow of control refactor.
- Bring Tempering, Path integrals, k-points, LSDA to life – "Übers".
- Parallelization of "Übers".
- GPGPUs for orthogonality.
- Parallelization of "Advanced methods" (PAW, HF, PSM, ...).

IBM tasks:

- Derive $N^2 \log(N)$ scaling PAW.
- Implement Grimme van der Waals.
- Derive reduced order HF exch.
- Derive selection rule for parallel tempering with sampled. potential surfaces – penalty method.
 - Derive improved CPAIMD via PSM.
 - Write toy codes and scientific papers.

Joint work:

- Framework new methods.
- Implement new methods.
- Develop test suite for new methods implement in OpenAtom's Jenkins app.
- Apply OpenAtom to important systems across S&T,
 e.g. Metal Organic Framework with Yale & UIUC.
- Develop analytics application for discovery.

accomplished

• TBD

Hero System

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

OpenAtom Ground State Software Overview

PPL Contributors: Eric Bohm, Nikhil Jain, Prateek Jindal, Eric Mikida, Michael Robson

000

INTERNE SALTER

IN LULI III III

T TOT

10/ 00 10 100

Software Infrastructure

- GIT (Gerrit) based repository:
 - http://charm.cs.illinois.edu/gerrit/openatom
 - Or https://github.com/ericbohm/OpenAtom/
- Test system datasets available in git
 - Make test Basic feature verification
 - Make full_test Extensive use case verification
- Jenkins testing
 - Release branch in nightly Charm++ testing
 - Release branch in Charm++ continuous integration testing

Ground State Feature Status

Feature	Minimization Status	Dynamics Status	Test Integration	
CPAIMD Dynamics	NA	Production	Automated	-
Path Integrals	Production	Production	Automated 🛛 👔	
K-Points	Production	Needs Verification	Manual	P
Spin Orbitals	Production	Production	Manual	P
Tempering	NA	Production	Manual	
Born Oppenheimer Dynamics	NA	Production	Automated	
Band Generation	Needs Verification	Needs Verification	Manual	P

Data Structures and control flow in OpenAtom

Object Decomposition

Showing a subset of object collections

Nikhil Jain

OBJECT PLACEMENT

Topology aware mapping

Adapting to different systems

- Separate the logical operations and machine-specific operations. Example:
 - Logical operation: get an ordered list of nodes
 - Machine specific: Hilbert curve traversal, blocked traversal, plane-traversal
- Density FFTs: require use of full bisection bandwidth – spread throughout the allocation.
- Matrix-matrix multiplies (pair calculators): place near the GSpace planes, but load balance is important.

System utilization without mapping

(barriers introduced for clarity)

System utilization with mapping

Impact of mapping on Blue Gene/Q: up to 30% improvement

Impact of mapping on Blue Waters: up to 32% improvement

Nikhil Jain

CHARM FFT

Optimizing FFTs in the density

• Charm-FFT implemented to help improve the performance of the density phase.

• Features:

- Concurrent FFTs
- 2D decomposition
- Overlaps with other work
- Cutoff aware
- Mapped by the application

Simulating 32 molecules of Water on Blue Waters

Impact of Charm-FFT on performance

Eric Bohm

MULTI-INSTANCE METHODS

Multi Instance Methods

- Retain all existing code with minimal changes
- Any feature available for CP minimization or dynamics automatically available for multi-instance use
- Add Master Index of objects
 - Uber[temper][bead][k-point][spin]
 - Objects in any instance can be referenced by any object
 - Support simulations with many kinds of multi instance physics
 - Instance Controller
 - Temper Controller
 - Sum energies across Tempers and Beads
 - Switch Energies and Temperatures
 - Bead Controller
 - Intrapolymer force evaluation and integration

Spin Orbitals (LSDA)

- Each Spin shares : atom and energy chares
- Electron density from down passed to up
 - VKS computed for each spin
 - Returns to standard flow of control
- Independent I/O for state data
- Independent placement for instance chares

K-Points

- Each k-point shares:
 - electron density, atoms, energy chares
- Electron density = sum over KP electron states
- Wave functions outside the first Brillouin zone forces use of complex (e.g., ZGEMM)
 - Instead of the "doublepack" optimization used at the Γ point
- Independent I/O for state data
- Independent placement for electron state instance chares

Path Integral Beads

- Path Integral Bead replica contains independent instances of all phases of CPAIMD
 - May contain k-point and spin ensembles
- Intrapolymer force evaluation in PIBeadAtoms
 - Interacts with each Bead
 instance's AtomsCompute
 - Supplements CPAIMD nucleic force integration phase
 - Computation Parallelized across NumAtoms and NumBeads
- Independent I/O for state and coordinate data
- Independent placement for instance chares

Multi Instance Challenge: cross bead interference

-	29,020,000	29,220,000	29,420,000	Time In Micros 29,620,000	econds 29,820,000 30,	020,000 30,2:	20,000 30,420,000	
PE 0 🛏	ar tari yana ang Tarawatar							
E 200 —								
E400 —								
E 600 —						State of the local division of the local div		
E 800 —								
1000 —		a a sha a she a						
1200 —						CONTRACTOR OF THE OWNER		
1400		the state of the s			میں بین <u>جناعہ ج</u> ہد	a a sub a		
1600					the state of the second se	and the second secon		
1800								
2000 -								
2400 -								
2600 -								
2800 -								
3000 -								
3200 -								
3400 —	بفرصون والمال							
3600 —								
3800 —								
4000 —								
4200 —								
4400 —								
4600 —								
4800 —								
5000 —						State of the local division of the local div		and the second se
5200 —			States and states of the local division of the local division of the local division of the local division of the		THE REAL PROPERTY OF			
5400 —				No. No. of Concession, Name				in the second
5600 —								A DESCRIPTION OF THE OWNER OF THE
5800 -				COLUMN TWO IS NOT	and the second			and the second second
6000 -							التايير المالي والمح	
6200 -				No. of Concession, Name				and the second second
6400 —								1.1

Cross FFT Interference

After Scheduling Improvements

		16,980,000	17,180,000	17,380,000	Time In Microseco 17,580,000	nds 17,780,000	17,980,000	18,180,000	18,380,000
PE1 PE1 PE2 PE3 PE4 PE4 PE5 PE6 PE7 P	PE 0								
PE2 PE3 PE4 P	PE1								
PE3 PE3 PE4 P	PE 2								
PE4 P	PE 3								
PE5 PE5 PE6 P	PE 4								
PE6 PE7 P	PE 5								
PE 7 PE 7 PE 8	PE 6								
PE 8 PE 10	PE 7								
PE10	PE 8								
PE 10 PE 11 PE 12 PE 13 PE 14 PE	PE 9								
PE11 PE12 PE14	PEIU						No. of Concession, Name		
PE12 PE14	PEII								
PE13 PE14	PEIZ								
PE 14 PE 14 <td< td=""><td>PEID PEIA</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>The second s</td></td<>	PEID PEIA								The second s
PE 13 PE 14 PE 17 PE 18 PE 19 PE 10 PE 11 PE 12 PE 12									
PE 10 PE 17 PE 18 PE 19 PE 20 PE 20 PE 21 PE 20 PE 21 PE 20 PE 21 PE 20 PE									
PE 18 PE 19 PE 20 PE 21 PE 22 PE 23 PE 23 PE 24 PE 24 PE 24 PE 24 PE 24 PE 25 PE 26 PE	DE 17							C CONTRACTOR	
PE 19 PE 20 PE 21 PE 22 PE 22 PE 23 PE 23 PE 23 PE 24 PE 24 PE 24 PE 24 PE 25 PE 25 PE 26 PE	DF18								
PE 20 PE 21 PE 22 PE 23 PE 24 PE	PF19		in and in and in and						
PE 21 PE 22 PE 23 PE 24 PE 24 PE 25 PE 26 PE 26	PF 20								
PE 22 PE 23 PE 24 PE 25 PE 26 PE 26 PE 26 PE 27 PE 28 PE 28 PE 28 PE 29 PE 20 PE	PE 21								
PE 23 PE 24 PE 25 PE 26 PE 26 PE 27 PE 28 PE 28 PE 28 PE 29 PE 29 PE 29 PE 20 PE	PE 22								
PE 24 PE 25 PE 26 PE 27 PE 28 PE 28 PE 29 PE 29 PE 29 PE 29 PE 30 PE	PE 23								
	PE 24								
	PE 25								
	PE 26		an ande an						
	PE 27								
	PE 28							ELECTRON N. C.	
PE 30 PE 31	PE 29								
	PE 30								
	PE 31							RECORDER &	
	•								

Tempers

- Contains independent instances of all phases of CPAIMD
- Each temper may contain Beads, K-points, and Spin instances
- Temper controller manages random neighbor shuffle to exchange temperatures across temper replicas
- Independent I/O for state and coordinate data
- Independent placement for instance chares

Temper Performance

Combined Performance

Michael Robson

Opportunities for GPUs

PC PC PC PC ORTHO PC

illinois.edu

Ortho Integration

- $T = S^{-1/2}$
- Kernel developed by summer intern
- Changes from distributed to centralized
- Gather pieces of S from PCs

PairCalculator

Opportunities for GPUs

- Orthonormalization (Ortho)
 Inverse Square Root of Matrix
- Pair Calculator (PC)
 - Matrix Matrix Multiplication
- Both make good GPU targets

Results for MOF System

1 iteration, 1PE, 64 XK Nodes of Blue Waters

Centralized Ortho, No CUDA

Results for 256 Water Molecules

1 iteration, 1 PE, 64 XK Nodes of Blue Waters

Centralized Ortho, No CUDA

Pair Calculator Results

- Baseline CUBLAS implementation
 - Offload forward and backward multiply
 - CUDA Streams
 - Directly allocate memory
 - Synchronize on data move
 - Fine because we don't have other work

Results for 256 Water Molecules

1 iterations, 1 PE, 64 XK Nodes of Blue Waters

Baseline

	Forward	Speedup	Backward	Speedup	Per Iter	Speedup
Baseline	327 ms		421 ms		2.582796 s	
CUBLAS	137 ms	2.39x	255 ms	1.65x	2.346571 s	1.10x

Ground State Future Work

- Test automation and feature verification
- Multi-Instance Performance Tuning
- CharmFFT integration for State and Non-local
- Fast Hartree Fock
- PAW
- GPU
 - GPU Manager integration
 - Backward path PC
 - CharmFFT
 - Communication optimization (NVLink, etc)
- Auto-tuning controls in PICS

Towards high scalable GW calculations

Subhasish Mandal¹, Minjung Kim¹, Eric Mikida², Eric Bohm², Prateek Jindal², Nikhil Jain², Laxmikant V. Kale², Glenn Martyna³, & Sohrab Ismail-Beigi¹

¹Dept. Of Applied Physics, Yale University

²Department of Computer Science, University of Illinois at Urbana– Champaign ³IBM T. J. Watson research Center

Towards high scalable GW calculations

OpenAtom + GW

University of Illinois IBM Watson Research Yale University

git clone http://charm.cs.illinois.edu/gerrit/openatom.git

Outline

- 1. Introduction & Motivation of GW
- 2. Stages of GW calculation
- 3. Static Polarizibility : Methods & Scaling
- 4. Computing self-energy $\Sigma(\omega)$

5. Summary

GW-BSE: what is it about?

DFT is a ground-state theory for electrons

But many processes involve <u>exciting</u> electrons:

• Transport of electrons in a material or across an interface: dynamically adding an electron

→ The other electrons respond to this and modify energy of added electron

"GW" method solves this problem

Successes of GW

Theoretical Band Gap, eV

Motivation (Cont.)

GW-BSE is computationally challenging:

- Huge number of FFTs
- Huge memory footprints
- Large and dense matrix multiplications

Theoretical scaling

Ex. 50-75 atoms (GaN)

DFT:	N ³	DFT:	1 cpu x hours
GW:	N ⁴	GW:	91 cpu x hours
BSE:	N ⁶	BSE:	2 cpu x hours

<u>Goal</u>:

Developing highly scalable GW-BSE software to tackle these challenges

Motivation (Cont.)

Would love to do GW-BSE on this photovoltaic system...

But with available GW-BSE methods

it would take "forever"

i.e. use up all my supercomputer allocation time

63

GW

Physicist's favorite : Hψ↓n =Enψ↓n

Dyson equation for many-body problem:

$$[-\nabla 2/2 + VH + Vion + \Sigma(En)] \psi \ln = En \psi \ln$$

GW Equation:

$$\Sigma(E) = \int \hat{f} \, dE \, \hat{f} \, G(E - E \, \hat{f}) \, W(E \, \hat{f})$$

Hedin, Phy Rev, 139, 1965; Hybertsen, Louie, PRB, 34,1986

self-energy

Stages of GW calculation

Stage 1 : Run DFT calc. on structure \rightarrow output : E_i and $\psi_i(r)$

Stage 2.1 : compute Polarizability matrix $P(r, r') = \frac{\partial n(r)}{\partial V(r')}$

Stage 2.2 : double FFT rows and columns $\rightarrow P(G,G')$

Stage 3 : compute and invert dielectric screening function $\epsilon = I - \sqrt{V_{coul}} * P * \sqrt{V_{coul}} \rightarrow \epsilon^{-1}$

Stage 4 : "plasmon-pole" method \rightarrow dynamic screening $\rightarrow \epsilon^{-1}(\omega)$

Stage 5 : put together E_i , $\psi_i(r)$ and $\epsilon^{-1}(\omega) \rightarrow \text{self-energy } \Sigma(\omega)$

Hardest parts

Stage 3 : compute and invert dielectric screening function $\epsilon = I - \sqrt{V_{coul}} * P * \sqrt{V_{coul}} \rightarrow \epsilon^{-1}$

Stage 4 : "plasmon-pole" method \rightarrow dynamic screening $\rightarrow \epsilon^{-1}(\omega)$

Stage 5 : put together E_i , $\psi_i(r)$ and $\epsilon^{-1}(\omega) \rightarrow \text{self-energy } \Sigma(\omega)$

Static Polarizability

$$P(G,G') = \sum_{v,c} \langle c | e^{-iG \cdot r} | v \rangle \langle v | e^{iG' \cdot r} | c \rangle \frac{2}{\varepsilon_v - \varepsilon_c}$$

FFT $[\psi_c^*(r)\psi_v(r)]$

Standard G-space approach:

- Directly compute P in G space
- A huge number of FFTs $(N_v N_c)$

N_v : # occupied states N_c : # unoccupied states

<u>R-space approach</u>: Much fewer number of FFTs

Static Polarizability

New R-space approach:

1) Calculate static polarizability in real space $P(r,r') = \sum_{v} \psi_{c}^{*}(r)\psi_{v}(r)\psi_{v}^{*}(r')\psi_{c}(r')\frac{2}{\varepsilon_{v}-\varepsilon_{c}}$ 2) FFTs for columns,

$$P(r,r') \longrightarrow P(G,r')$$
 # FFTs: N_r

3) FFTs for rows

 $P(G,r') \longrightarrow P(G,G')$ # FFTs: N_r

G-space
approachR-space
approach#FFT $N_v N_c$ $8N_c$ $N_v = 500$
 $N_c = 1,500$ 750,00012,000 $N_c : #$ unoccupied states
 $N_c : # unoccupied states$

N_r: # R grid

 $N_r \approx 4Nc$

Static Polarizability

What R grid should we use?:

$$P(r,r') = \sum_{v,c} \psi_c^*(r) \psi_v(r) \psi_v^*(r') \psi_c(r') \frac{2}{\varepsilon_v - \varepsilon_c}$$

- Si crystal
- Dense FFT grid: 24×24×24
- P and ε⁻¹ converge at: 12×12×12

3D FFT box

reduced to 1/8 !!

Scaling of Polarizibility

$$P(r,r') = \sum_{v,c} \psi_c^*(r) \psi_v(r) \psi_v^*(r') \psi_c(r') \frac{2}{\varepsilon_v - \varepsilon_c}$$
$$f \downarrow \uparrow = \psi \downarrow c \uparrow * \times \psi \downarrow v \uparrow$$

Test system

- ✤ Si bulk
- Total number of atom : 54
- 108 occupied states
- 892 unoccupied states
- ✤ 3 k-points
- 289,008 total f vectors
- Each state and f vector ~0.5 MB

Perform * Results on 1024 nodes of Ve	ance sta, 32 threads p	per node
$P(r,r') = \sum_{v,c} \psi_c^*(r) \psi_v(r) \psi_v^*(r') \psi_c$	$c_{c}(r')\frac{2}{\varepsilon_{v}-\varepsilon_{c}} \qquad f\downarrow$	rîvc=ψ↓rîv*>
Calculation	Tir	ne (seconds)
		No SMP, BLAS 2 (1D decomposition)
Compute f vectors for a single unocc state		0.08
Total for 2,676 sets of f vectors		378.04
Total wall time		416.22
Overhead (comm, synchronization)		38.18

SMP: shared memory programming: takes advantage of node level parallelism Eric M, UIUC 71

Performance

Number of Nodes

32 Threads per node on Vesta
GW-Self-Energy (Σ)

Stage 5 : Put together E_i , $\psi_i(r)$ and $\epsilon^{-1}(\omega) \rightarrow \text{self-energy } \Sigma(\omega)$

GW-Static Self-Energy (COHSEX)

Static self-energy approximation: a useful simplification

$W(r,r',E) \rightarrow W(r,r',E=0)=W(r,r')$

 $Hqp\uparrow = HKS + \Sigma\uparrow X + \Sigma\uparrow SEX + \Sigma\uparrow COH - V\downarrow xc$

GW-Static Self-Energy (COHSEX)

Static self-energy approximation: a useful simplification $W(r,r',E) \rightarrow W(r,r',E=0)=W(r,r')$

System	Experiment		GW(full)
Diamond	5.48		5.70
Si	1.17		1.29

GW-Bare Exchange

$$\langle nk | \Sigma_{x} | n'k \rangle^{q} = -\sum_{l=1}^{L} \sum_{g} \int dr \int dr' \, \mathcal{V}(g) \, e^{-ig \cdot r} \int_{r}^{nl} \int_{r'}^{n'l} * e^{ig \cdot r'} e^{ig \cdot r$$

Coded and tested

GW In-house code

Strategy 1:

Real time required on Si calculation: **135.369** sec

FFT of rank 2 matrix

Strategy 2:

Real time required on Si calculation:2.783 ssec

FFT of vector

Strategy 2 wins

Screened Exchange: followed with Strategy 2

Coulomb-Hole: followed with Strategy 2

<u>Summary</u>

- New R-space approach of Polarizibility
- Polarizibility is parallelized with Charm++ & take the advantage of SMP
- We have investigated various ways to calculate static self-energy.
- Strategy 1 is effective for P(G,G') But for COHSEX Strategy 2 wins

Acknowledgement

NCSA & ALCF@Argonne National Laboratory.

QUESTION ?

Static polarizability calculations

$$\varepsilon(G,G') = \delta_{G,G'} - \sqrt{V_G} P(G,G') \sqrt{V_{G'}}$$
The most time consuming part

$$P(G,G') = \sum_{v,c} \langle c | e^{-iG \cdot r} | v \rangle \langle v | e^{iG' \cdot r} | c \rangle \frac{2}{\varepsilon_v - \varepsilon_c}$$

FFT $[\psi_c^*(r)\psi_v(r)]$

Standard G-space approach:

- Directly compute P in G space
- A huge number of FFTs $(N_v N_c)$

```
Nv : # occupied
states
Nc : # unoccupied
states
```

<u>R-space approach</u>: Much fewer number of FFTs

GW-Static Self-Energy (COHSEX)

Static self-energy approximation: a useful simplification $W(r,r',E) \rightarrow W(r,r',E=0)=W(r,r')$

 $\Sigma \uparrow X(r,r\uparrow') = -\sum n \uparrow occ = \psi \downarrow n(r) \psi \downarrow n \uparrow *(r\uparrow') \nu \downarrow c(r,r\uparrow')$

 $\Sigma \uparrow SEX(r,r\uparrow') = -\sum n \uparrow occ = \psi \downarrow n(r) \psi \downarrow n\uparrow *(r\uparrow') [W(r,r\uparrow') - v_{\uparrow}]$

 $\Sigma \uparrow COH(r,r \uparrow') = 1/2 \, \delta(r - r \uparrow') [W(r,r \uparrow') - v \downarrow c(r,r \uparrow')]$

 $Hqp\uparrow = HKS + \Sigma\uparrow X + \Sigma\uparrow SEX + \Sigma\uparrow COH - V\downarrow xc$

$$\langle nk | \Sigma_{x} | n'k \rangle^{q} = -\sum_{l=1}^{L} \sum_{g} \int dr \int dr' v(g) \ e^{-ig \cdot r} \ f_{r}^{nl} f_{r'}^{n'l} * e^{ig \cdot r'}$$
Coulomb
$$\psi_{r}^{n} \times \psi_{r}^{l} *$$
Sum over I & compute:
$$B_{r,r'} = \sum_{l=1}^{L} \psi_{r,l} \psi_{r',l} *$$
Double FFT
$$Dgg' = \int Br, r' \ e^{\uparrow} - ig.r \ e^{\uparrow} ig'.r \ \psi \downarrow n, r^{\uparrow} * \downarrow \psi \downarrow n', r' \ dr dr' \downarrow d$$

Strategy 2:

$$\langle nk | \Sigma_x | n'k \rangle^q = -\sum_{l=1}^L \sum_g \int dr \int dr' v(g) \ e^{-ig \cdot r} \ f_r^{nl} f_{r'}^{n'l} * e^{ig \cdot r'}$$

$$f \downarrow g \uparrow n, l = \int \uparrow \blacksquare \ f \downarrow r \uparrow l \ e \uparrow - ig \cdot r \ \psi \downarrow n, r$$
Compute f_r (vector) and do FFT:

Multiply: $v_g f_g f_{g'}$ and take sum over g $< n/\Sigma X \uparrow /n \uparrow > = \sum g, l \uparrow @vc \uparrow (g) f \downarrow g \uparrow n \uparrow , l* f \downarrow g \uparrow n, \uparrow$ \uparrow

Strategy 2: Coded and tested

Density Functional Theory

For the ground-state of an interacting electron system

we solve a Schrodinger-like equation for electrons

$$\left[-\frac{\hbar^2 \nabla^2}{2m_e} + V_{ion}(r) + \phi(r) + V_{xc}(r)\right] \psi_j(r) = \epsilon_j \,\psi_j(r)$$

Approximations needed for $V_{xc}(r)$: LDA, GGA, *etc*.

Tempting: use these electron energies ϵ_j to describe processes where electrons change energy (absorb light, current flow, etc.)

Hohenberg & Kohn, Phys. Rev. (1964); Kohn and Sham, Phys. Rev. (1965).

Performance

Step 2 – FFT P to G-Space

♦FFT each row of P locally: $P(r,r') \implies P(G,r')$ ♦Transpose P
♦FFT each row locally again
♦Transpose P again: $P(G,r') \implies P(G,G')$ ♦Total time: 13.93s

* Results on 1024 nodes of Vesta, 32 threads per node 84

GW In-house code

Strategy 1:

FFT of rank 2 matrix

Real time required on Si calculation: **135.369** sec

Strategy 2:

FFT of vector Real time required on Si calculation: **2.783** ssec

Strategy 2 wins

Summary:

GW-Static Self-Energy (COHSEX)

Static self-energy approximation: a useful simplification $W(r,r',E) \rightarrow W(r,r',E=0)=W(r,r')$ $\Sigma \uparrow X(r,r\uparrow')=-\sum n \uparrow occ \quad \psi \downarrow n(r) \\ \psi \downarrow n\uparrow *(r\uparrow') \\ \upsilon \downarrow c(r,r\uparrow')$

 $\Sigma \uparrow SEX(r,r\uparrow') = -\sum n \uparrow occ = \psi \downarrow n(r) \psi \downarrow n\uparrow *(r\uparrow') [W(r,r\uparrow') - \nu \downarrow c(r,r\uparrow')]$

 $\Sigma \uparrow COH(r,r \uparrow') = 1/2 \, \delta(r - r \uparrow') [W(r,r \uparrow') - v \downarrow c(r,r \uparrow')]$

$Hqp\uparrow = HKS + \Sigma\uparrow X + \Sigma\uparrow SEX + \Sigma\uparrow COH - V\downarrow xc$

System	Experiment	DFT-LDA	COHSEX	Corrected COHSEX*	GW(full)
Diamond	5.48	4.20	6.99	5.93	5.70
Si	1.17	0.49	1.70	1.18	1.29

*Kang & Hybertsen, Phy Rev B, 82, 2010

Scaling of Polarizibility

Most expensive

Stage 2.1 : compute Polarizability matrix $P(r,r') = \frac{\partial n(r)}{\partial V(r')}$

Stage 2.2 : double FFT rows and columns $\rightarrow P(G,G')$

Strategy 1:

Computational load (on pen & paper)

Step 1:
$$B_{r,r'} \sim 10^5 \times N_L^3$$
 Step 3: $\sum_g v_g D_{g,g} \sim 2 \times N_L^3$
Step 2: $D_{g,g'} \sim 10^5 \times N_L^4$ NL: # of occupied bands

Strategy 2:

Step 1:
$$f_g^{nl} f_{g'}^{n'l*} \sim 6 \times 10^3 \times N_L^3$$

Step 2: $\sum_{l,g} v_g f_g^{n,l} f_{g'}^{n',l} \sim 1.7 N_L^4$

GW-BSE: what is it about?

DFT is a ground-state theory for electrons

But many processes involve <u>exciting</u> electrons:

- Transport of electrons
- Excited electrons: optical absorption promotes electron to higher energy

The missing electron (hole) has + charge, attracts electron: <u>modifies</u> excitation energy and absorption strength

"BSE" method solves this problem

<u>Would love to do GW on this interfacial</u> <u>oxide/semiconductor system...</u>

Si interface with SrTiO₃

Full unit cell

<u>Would love to do GW on this interfacial</u> <u>oxide/semiconductor system...</u>

Si interface with SrTiO₃

Full unit cell

Biggest Computational load (on pen & paper)

 N_L : # of occupied bands

Strategy 1:

 $\sum_{l,g} v_g f_g^{n,l} f_g^{n',l} \sim 1.7 N_L^4$

Performance

Step 1 – P in R-Space

Berkeley GW

OpenAtom

Number of Threads

Number of Threads

Step 2 – FFT P to G-Space

....Work in progress

Performance

32 Threads per node on Vesta

Step 2 – FFT P to G-SpaceWork in progress

DFT: problems with excitations

[1] Landolt-Bornstien, vol. III; Baldini & Bosacchi, Phys. Stat. Solidi (1970).

Green's functions successes Energy gaps (eV)

