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  Motivation: Memory is the Bottleneck
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Memory Bottleneck Optimization
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State of the Arts
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weaknesses:!
• 2-5x overhead!
• not real machines



Hardware Address Sampling

• Features of address sampling 
– necessary features 

• sample memory-related events (memory accesses, NUMA events) 
• capture effective addresses  
• record precise IP of sampled instructions or events 

– optional features 
• record useful metrics: data access latency (in CPU cycle) 
• sample instructions/events not related to memory 

•  Support in modern processors 
• AMD Opteron 10h and above: instruction-based sampling (IBS) 
• IBM POWER 5 and above: marked event sampling (MRK) 
• Intel Itanium 2: data event address register sampling (DEAR) 
• Intel Pentium 4 and above: precise event based sampling (PEBS) 
• Intel Nehalem and above: PEBS with load latency (PEBS-LL)
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Tools Based on Address Sampling

• Measurement methods 
– temporal/spatial locality 

• HPCToolkit, Cache Scope 
– NUMA locality 

• Memphis, MemProf, HPCToolkit 

• Features 
– lightweight performance data collection 
– efficient performance data attribution 

• code-centric attribution 
• data-centric attribution
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Take HPCToolkit for example!
“A Data-centric Profiler for Parallel Programs”. Liu and Mellor-Crummey, SC’13



     HPCToolkit: Attributing Samples
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HPCToolkit: Aggregating Profiles
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         LULESH on Platform of 8 NUMA Domains
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        Existing Measurement is Inadequate

• Data collection + attribution ≠ optimal optimization 
– know problematic data objects but not know why 
– need more insights for optimization guidance 
– challenges in data analysis 

• not monitoring continuous memory accesses 

• Approaches: data analysis for detailed optimization guidance 
– NUMA locality  

• offline optimization (PPoPP’14) 
• online optimization 

– cache locality 
• array regrouping (PACT’14) 
• structure splitting 
• locality optimization between SMT threads 

– scalability of memory accesses
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        Interleaved Allocation is NOT Always Best
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Memory Access Pattern Analysis

• Online data collection 
!
!
!
!
!
!
!
!
!

• Offline analysis 
– merge [min, max] intervals along call paths 
– plot [min, max] for each thread 

• can be for any context, any variable
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Pinpointing First Touch

• Linux “first touch” policy 
– memory allocation at first touch 
– if T1 first touches the whole range of A 
– if threads touch different segments of A 

• Pinpoint “first touch” 
– protect each variable’s pages at allocation 
– first access to each variable traps

array A
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         LULESH on Platform of 8 NUMA Domains
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       Experiments: Architectures & Applications
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Architectures
Sampling mechanisms Processors Threads

Instruction-based sampling               AMD Magny-Cours 48

Marked event sampling                   IBM POWER 7 128

Precise event-based sampling       Intel Xeon Harpertown 8

Data event address registers        Intel Itanium 2 8

PEBS with load latency Intel Ivy Bridge 8

Benchmarks
LLNL LANL Rodinia PARSEC SNL

AMG2006 Sweep3D Streamcluster Blackscholes S3D
LULESH NW

Sphot
UMT2013

IBS

MRK

PEBS

DEAR

PEBS-LL

optimized benchmarks
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Optimization Results
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Programs Optimization Improvement for execution time

AMG2006 NUMA locality 51% for the solver 

Sweep3D spatial locality 15%

LULESH spatial+NUMA locality 25%

Streamcluster NUMA locality 28%

NW NUMA locality 53%

UMT2013 NUMA locality 7%
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Measurement Overhead
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Benchmark Configuration Overhead
AMG2006 4 MPI * 128 threads 604s (+9.6%)
Sweep3D 48 MPI 90s (+2.3%)
LULESH 48 threads 19s (+12%)

Streamcluster 128 threads 27s (+8.0%)
NW 128 threads 80s (+3.9%)

Code- & data-centric analysis on POWER7 and Opteron

Methods LULESH AMG2006 Blacksholes

IBS 295s (+24%) 89 (+37%) 192s (+6%)
MRK 93s (+5%) 27s (+7%) 132s (+4%)

PEBS 65s (+45%) 96s (+52%) 82s (+25%)

DEAR 90s (+7%) 120s (+12%) 73s (+4%)

PEBS-LL 35s (+6%) 57s (+8%) 67s (+3%)

NUMA analysis: code-, data-, and address-centric analysis + first touch



Conclusions and Future Work

• Hardware address sampling 
– widely supported in modern architectures 
– powerful in monitoring memory behaviors 
– currently in early stage of studies 

• focusing on data collection and attribution 

• Potentials of hardware address sampling 
– provide deeper insights than traditional performance counters 
– require novel analysis methods to expose performance insights 
!

• Future work 
– integrating address sampling into Charm++ runtime for online 

optimization
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