
Leveraging Hardware Address
Sampling !

Beyond Data Collection and Attribution

Xu Liu
!

Department of Computer Science
College of William and Mary

xl10@cs.wm.edu

mailto:xl10@cs.wm.edu

 Motivation: Memory is the Bottleneck

2

local
access

remote
access

core core

cache

memory

core core

cache

memory

QuickPath

HyperTransport

NUMA: Non-Uniform Memory Access

Memory Bottleneck Optimization

3

locality

locality

locality

0 1

2 3

0 1

2 3

NUMA

temporal

spatial

cache miss

State of the Arts

4

simulation methods

measurement methods

deep insights

low overhead

low overhead with deep insights

deep insights with low overhead

weaknesses:!
• 2-5x overhead!
• not real machines

Hardware Address Sampling

• Features of address sampling
– necessary features

• sample memory-related events (memory accesses, NUMA events)
• capture effective addresses
• record precise IP of sampled instructions or events

– optional features
• record useful metrics: data access latency (in CPU cycle)
• sample instructions/events not related to memory

• Support in modern processors
• AMD Opteron 10h and above: instruction-based sampling (IBS)
• IBM POWER 5 and above: marked event sampling (MRK)
• Intel Itanium 2: data event address register sampling (DEAR)
• Intel Pentium 4 and above: precise event based sampling (PEBS)
• Intel Nehalem and above: PEBS with load latency (PEBS-LL)

5

Tools Based on Address Sampling

• Measurement methods
– temporal/spatial locality

• HPCToolkit, Cache Scope
– NUMA locality

• Memphis, MemProf, HPCToolkit

• Features
– lightweight performance data collection
– efficient performance data attribution

• code-centric attribution
• data-centric attribution

6

Take HPCToolkit for example!
“A Data-centric Profiler for Parallel Programs”. Liu and Mellor-Crummey, SC’13

 HPCToolkit: Attributing Samples

7

heap allocated
variables

variable
name

static !
variables

... ...
allocation path

malloc

variable range

0x0 0xff

data-centric attribution

code-centric attribution

8

HPCToolkit: Aggregating Profiles

heap allocated
variables

...
allocation path

malloc

heap allocated
variables

...
allocation path

malloc

heap allocated
variables

...
allocation path

malloc

...
merge

 LULESH on Platform of 8 NUMA Domains

9

allocation call path call site of allocation

z accounts for
7.7% remote accesses

call paths for
accesses

remote accesses

heap data:68%
remote accesses

interleave pages of z
across NUMA nodes!
13% improvement in

running time

z is allocated in a
NUMA domain but
accessed by others

 Existing Measurement is Inadequate

• Data collection + attribution ≠ optimal optimization
– know problematic data objects but not know why
– need more insights for optimization guidance
– challenges in data analysis

• not monitoring continuous memory accesses

• Approaches: data analysis for detailed optimization guidance
– NUMA locality

• offline optimization (PPoPP’14)
• online optimization

– cache locality
• array regrouping (PACT’14)
• structure splitting
• locality optimization between SMT threads

– scalability of memory accesses

10

11

 Interleaved Allocation is NOT Always Best

11

core1 core2

core3 core4

core1 core2

core3 core4

core1 core2

core3 core4

core1 core2

core3 core4

domain 1 domain 2 domain 3 domain 4

centralized allocation: poor

interleaved allocation: sub-optimal

co-locate data with computation: optimal

Goal: identify the best data distribution for a program

allocation 1

allocation 2

allocation 3

12

Memory Access Pattern Analysis

• Online data collection
!
!
!
!
!
!
!
!
!

• Offline analysis
– merge [min, max] intervals along call paths
– plot [min, max] for each thread

• can be for any context, any variable

12

array A

domain1

[min1, max1]

[min2, max2]

[min, max]

T1 T2 T3 T4

allocate A blockwise to different domains

domain2 domain3 domain4

balanced allocation + maximum locality

array A

min max

[min, max] per sampled
memory access

0x00 0xff

address

13

Pinpointing First Touch

• Linux “first touch” policy
– memory allocation at first touch
– if T1 first touches the whole range of A
– if threads touch different segments of A

• Pinpoint “first touch”
– protect each variable’s pages at allocation
– first access to each variable traps

array A

domain1

heap allocated variable

...
allocation path

first touch

domain2 domain3 domain4domain1

0x0 0xff

14

 LULESH on Platform of 8 NUMA Domains

call path !
allocates z

call paths!
access z

call path  
first touches
z

special metrics common metrics

Block-wise allocation: 25% faster running time!
Interleaved allocation: 13% faster running time

z accounts for 7.7% of
remote accesses

source code  
first touches z

domain!
0

domain!
7

15

 Experiments: Architectures & Applications

15

Architectures
Sampling mechanisms Processors Threads

Instruction-based sampling AMD Magny-Cours 48

Marked event sampling IBM POWER 7 128

Precise event-based sampling Intel Xeon Harpertown 8

Data event address registers Intel Itanium 2 8

PEBS with load latency Intel Ivy Bridge 8

Benchmarks
LLNL LANL Rodinia PARSEC SNL

AMG2006 Sweep3D Streamcluster Blackscholes S3D
LULESH NW

Sphot
UMT2013

IBS

MRK

PEBS

DEAR

PEBS-LL

optimized benchmarks

16

Optimization Results

16

Programs Optimization Improvement for execution time

AMG2006 NUMA locality 51% for the solver

Sweep3D spatial locality 15%

LULESH spatial+NUMA locality 25%

Streamcluster NUMA locality 28%

NW NUMA locality 53%

UMT2013 NUMA locality 7%

17

Measurement Overhead

17

Benchmark Configuration Overhead
AMG2006 4 MPI * 128 threads 604s (+9.6%)
Sweep3D 48 MPI 90s (+2.3%)
LULESH 48 threads 19s (+12%)

Streamcluster 128 threads 27s (+8.0%)
NW 128 threads 80s (+3.9%)

Code- & data-centric analysis on POWER7 and Opteron

Methods LULESH AMG2006 Blacksholes

IBS 295s (+24%) 89 (+37%) 192s (+6%)
MRK 93s (+5%) 27s (+7%) 132s (+4%)

PEBS 65s (+45%) 96s (+52%) 82s (+25%)

DEAR 90s (+7%) 120s (+12%) 73s (+4%)

PEBS-LL 35s (+6%) 57s (+8%) 67s (+3%)

NUMA analysis: code-, data-, and address-centric analysis + first touch

Conclusions and Future Work

• Hardware address sampling
– widely supported in modern architectures
– powerful in monitoring memory behaviors
– currently in early stage of studies

• focusing on data collection and attribution

• Potentials of hardware address sampling
– provide deeper insights than traditional performance counters
– require novel analysis methods to expose performance insights
!

• Future work
– integrating address sampling into Charm++ runtime for online

optimization

18

