Leveraging Hardware Address Sampling Beyond Data Collection and Attribution

Xu Liu

Department of Computer Science College of William and Mary <u>xl10@cs.wm.edu</u>

NUMA: Non-Uniform Memory Access

Memory Bottleneck Optimization

spatial locality

3

2

2

3

NUMA locality

- Features of address sampling
 - necessary features
 - sample memory-related events (memory accesses, NUMA events)
 - capture effective addresses
 - record precise IP of sampled instructions or events
 - optional features
 - record useful metrics: data access latency (in CPU cycle)
 - sample instructions/events not related to memory
- Support in modern processors
 - AMD Opteron 10h and above: instruction-based sampling (IBS)
 - IBM POWER 5 and above: marked event sampling (MRK)
 - Intel Itanium 2: data event address register sampling (DEAR)
 - Intel Pentium 4 and above: precise event based sampling (PEBS)
 - Intel Nehalem and above: PEBS with load latency (PEBS-LL)

- Measurement methods
 - temporal/spatial locality
 - HPCToolkit, Cache Scope
 - NUMA locality
 - Memphis, MemProf, HPCToolkit
- Features
 - lightweight performance data collection
 - efficient performance data attribution
 - code-centric attribution
 - data-centric attribution

Take HPCToolkit for example

"A Data-centric Profiler for Parallel Programs". Liu and Mellor-Crummey, SC'13

HPCToolkit: Attributing Samples

HPCToolkit: Aggregating Profiles

LULESH on Platform of 8 NUMA Domains

- Data collection + attribution ≠ optimal optimization
 - know problematic data objects but not know why
 - need more insights for optimization guidance
 - challenges in data analysis
 - not monitoring continuous memory accesses
- Approaches: data analysis for detailed optimization guidance
 - NUMA locality
 - offline optimization (PPoPP'14)
 - online optimization
 - cache locality
 - array regrouping (PACT'14)
 - structure splitting
 - locality optimization between SMT threads
 - scalability of memory accesses

Interleaved Allocation is NOT Always Best

Goal: identify the best data distribution for a program

Memory Access Pattern Analysis

Pinpointing First Touch

·LULESH on Platform of 8 NUMA Domains

-Experiments: Architectures & Applications

Architectures

Sampling mechanisms		Processors	Threads
Instruction-based sampling	IBS	AMD Magny-Cours	48
Marked event sampling	MRK	IBM POWER 7	128
Precise event-based sampling	PEBS	Intel Xeon Harpertown	8
Data event address registers	DEAR	Intel Itanium 2	8
PEBS with load latency	PEBS-LL	Intel Ivy Bridge	8

		Benchmarks		
LLNL	LANL	Rodinia	PARSEC	SNL
AMG2006	Sweep3D	Streamcluster	Blackscholes	S3D
LULESH		NW		
Sphot				
UMT2013			optimized bei	nchmarks

Optimization Results

Programs	Optimization	Improvement for execution time
AMG2006	NUMA locality	51% for the solver
Sweep3D	spatial locality	15%
LULESH	spatial+NUMA locality	25%
Streamcluster	NUMA locality	28%
NW	NUMA locality	53%
UMT2013	NUMA locality	7%

Measurement Overhead

Code- & data-centric analysis on POWER7 and Opteron

Benchmark	Configuration	Overhead
AMG2006	4 MPI * 128 threads	604s (+9.6%)
Sweep3D	48 MPI	90s (+2.3%)
LULESH	48 threads	19s (+12%)
Streamcluster	128 threads	27s (+8.0%)
NW	128 threads	80s (+3.9%)

NUMA analysis: code-, data-, and address-centric analysis + first touch

Methods	LULESH	AMG2006	Blacksholes
IBS	295s (+24%)	89 (+37%)	192s (+6%)
MRK	93s (+5%)	27s (+7%)	132s (+4%)
PEBS	65s (+45%)	96s (+52%)	82s (+25%)
DEAR	90s (+7%)	120s (+12%)	73s (+4%)
PEBS-LL	35s (+6%)	57s (+8%)	67s (+3%)

- Hardware address sampling
 - widely supported in modern architectures
 - powerful in monitoring memory behaviors
 - currently in early stage of studies
 - focusing on data collection and attribution
- Potentials of hardware address sampling
 - provide deeper insights than traditional performance counters
 - require novel analysis methods to expose performance insights
- Future work
 - integrating address sampling into Charm++ runtime for online optimization

