
Lessons Learned from

Porting the MiniAero Application to Charm++

David S. Hollman, Janine Bennett (PI), Jeremiah Wilke (Chief Architect),

Ken Franko, Hemanth Kolla, Paul Lin, Greg Sjaardema, Nicole Slattengren,

Keita Teranishi, Nikhil Jain, Eric Mikida
May 7, 2015

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2015-3671 C



Outline

Introduction

The Process: Porting an Explicit Aerodynamics Miniapp to the Chare Model

What was easy?

What was harder?

Preliminary Results and Performance

Next Steps

May 7, 2015 2



Outline

Introduction

The Process: Porting an Explicit Aerodynamics Miniapp to the Chare Model

What was easy?

What was harder?

Preliminary Results and Performance

Next Steps

May 7, 2015 2



Outline

Introduction

The Process: Porting an Explicit Aerodynamics Miniapp to the Chare Model

What was easy?

What was harder?

Preliminary Results and Performance

Next Steps

May 7, 2015 2



Outline

Introduction

The Process: Porting an Explicit Aerodynamics Miniapp to the Chare Model

What was easy?

What was harder?

Preliminary Results and Performance

Next Steps

May 7, 2015 2



Outline

Introduction

The Process: Porting an Explicit Aerodynamics Miniapp to the Chare Model

What was easy?

What was harder?

Preliminary Results and Performance

Next Steps

May 7, 2015 3



The DHARMA Project

DHARMA: Distributed asyncHronous Adaptive Resilient

Models for Applications

Project mission: Assess and address fundamental challenges imposed

by the need for performant, portable, scalable, fault-tolerant

programming models at extreme-scale

Research in programmability, dynamic load-balancing, and

fault-tolerance of AMT runtimes

Comparative analysis portion of the project:

Assess various asynchronous many-task (AMT) runtimes by implementing

mini-apps of interest to Sandia using existing runtimes
First three runtimes to assess:

Charm++

Legion

Uintah

First mini-app for assessment: MiniAero

May 7, 2015 4



The DHARMA Project

DHARMA: Distributed asyncHronous Adaptive Resilient

Models for Applications

Project mission: Assess and address fundamental challenges imposed

by the need for performant, portable, scalable, fault-tolerant

programming models at extreme-scale

Research in programmability, dynamic load-balancing, and

fault-tolerance of AMT runtimes

Comparative analysis portion of the project:

Assess various asynchronous many-task (AMT) runtimes by implementing

mini-apps of interest to Sandia using existing runtimes
First three runtimes to assess:

Charm++

Legion

Uintah

First mini-app for assessment: MiniAero

May 7, 2015 4



The DHARMA Project

DHARMA: Distributed asyncHronous Adaptive Resilient

Models for Applications

Project mission: Assess and address fundamental challenges imposed

by the need for performant, portable, scalable, fault-tolerant

programming models at extreme-scale

Research in programmability, dynamic load-balancing, and

fault-tolerance of AMT runtimes

Comparative analysis portion of the project:

Assess various asynchronous many-task (AMT) runtimes by implementing

mini-apps of interest to Sandia using existing runtimes
First three runtimes to assess:

Charm++

Legion

Uintah

First mini-app for assessment: MiniAero

May 7, 2015 4



The DHARMA Project

DHARMA: Distributed asyncHronous Adaptive Resilient

Models for Applications

Project mission: Assess and address fundamental challenges imposed

by the need for performant, portable, scalable, fault-tolerant

programming models at extreme-scale

Research in programmability, dynamic load-balancing, and

fault-tolerance of AMT runtimes

Comparative analysis portion of the project:

Assess various asynchronous many-task (AMT) runtimes by implementing

mini-apps of interest to Sandia using existing runtimes
First three runtimes to assess:

Charm++

Legion

Uintah

First mini-app for assessment: MiniAero

May 7, 2015 4



The DHARMA Project

DHARMA: Distributed asyncHronous Adaptive Resilient

Models for Applications

Project mission: Assess and address fundamental challenges imposed

by the need for performant, portable, scalable, fault-tolerant

programming models at extreme-scale

Research in programmability, dynamic load-balancing, and

fault-tolerance of AMT runtimes

Comparative analysis portion of the project:

Assess various asynchronous many-task (AMT) runtimes by implementing

mini-apps of interest to Sandia using existing runtimes
First three runtimes to assess:

Charm++

Legion

Uintah

First mini-app for assessment: MiniAero

May 7, 2015 4



The DHARMA Project

DHARMA: Distributed asyncHronous Adaptive Resilient

Models for Applications

Project mission: Assess and address fundamental challenges imposed

by the need for performant, portable, scalable, fault-tolerant

programming models at extreme-scale

Research in programmability, dynamic load-balancing, and

fault-tolerance of AMT runtimes

Comparative analysis portion of the project:

Assess various asynchronous many-task (AMT) runtimes by implementing

mini-apps of interest to Sandia using existing runtimes

First three runtimes to assess:

Charm++

Legion

Uintah

First mini-app for assessment: MiniAero

May 7, 2015 4



The DHARMA Project

DHARMA: Distributed asyncHronous Adaptive Resilient

Models for Applications

Project mission: Assess and address fundamental challenges imposed

by the need for performant, portable, scalable, fault-tolerant

programming models at extreme-scale

Research in programmability, dynamic load-balancing, and

fault-tolerance of AMT runtimes

Comparative analysis portion of the project:

Assess various asynchronous many-task (AMT) runtimes by implementing

mini-apps of interest to Sandia using existing runtimes
First three runtimes to assess:

Charm++

Legion

Uintah

First mini-app for assessment: MiniAero

May 7, 2015 4



The DHARMA Project

DHARMA: Distributed asyncHronous Adaptive Resilient

Models for Applications

Project mission: Assess and address fundamental challenges imposed

by the need for performant, portable, scalable, fault-tolerant

programming models at extreme-scale

Research in programmability, dynamic load-balancing, and

fault-tolerance of AMT runtimes

Comparative analysis portion of the project:

Assess various asynchronous many-task (AMT) runtimes by implementing

mini-apps of interest to Sandia using existing runtimes
First three runtimes to assess:

Charm++

Legion

Uintah

First mini-app for assessment: MiniAero

May 7, 2015 4



The DHARMA Project

DHARMA: Distributed asyncHronous Adaptive Resilient

Models for Applications

Project mission: Assess and address fundamental challenges imposed

by the need for performant, portable, scalable, fault-tolerant

programming models at extreme-scale

Research in programmability, dynamic load-balancing, and

fault-tolerance of AMT runtimes

Comparative analysis portion of the project:

Assess various asynchronous many-task (AMT) runtimes by implementing

mini-apps of interest to Sandia using existing runtimes
First three runtimes to assess:

Charm++

Legion

Uintah

First mini-app for assessment: MiniAero

May 7, 2015 4



What is MiniAero?

MiniAero is a proxy app illustrating the common

computation and communication patterns in

unstructured mesh codes of interest to Sandia

3D, unstructured, finite volume computational fluid

dynamics code

Uses Runge-Kutta fourth-order time marching

Has options for first and second order spatial

discretization

Includes inviscid Roe and viscous Newtonian flux options

Baseline application is about 3800 lines of C++ code

using MPI and Kokkos

Very little task parallelism; mostly a data parallel

problem

Communication: ghost exchanges, unstructured mesh

May 7, 2015 5



What is MiniAero?

MiniAero is a proxy app illustrating the common

computation and communication patterns in

unstructured mesh codes of interest to Sandia

3D, unstructured, finite volume computational fluid

dynamics code

Uses Runge-Kutta fourth-order time marching

Has options for first and second order spatial

discretization

Includes inviscid Roe and viscous Newtonian flux options

Baseline application is about 3800 lines of C++ code

using MPI and Kokkos

Very little task parallelism; mostly a data parallel

problem

Communication: ghost exchanges, unstructured mesh

May 7, 2015 5



What is MiniAero?

MiniAero is a proxy app illustrating the common

computation and communication patterns in

unstructured mesh codes of interest to Sandia

3D, unstructured, finite volume computational fluid

dynamics code

Uses Runge-Kutta fourth-order time marching

Has options for first and second order spatial

discretization

Includes inviscid Roe and viscous Newtonian flux options

Baseline application is about 3800 lines of C++ code

using MPI and Kokkos

Very little task parallelism; mostly a data parallel

problem

Communication: ghost exchanges, unstructured mesh

May 7, 2015 5



What is MiniAero?

MiniAero is a proxy app illustrating the common

computation and communication patterns in

unstructured mesh codes of interest to Sandia

3D, unstructured, finite volume computational fluid

dynamics code

Uses Runge-Kutta fourth-order time marching

Has options for first and second order spatial

discretization

Includes inviscid Roe and viscous Newtonian flux options

Baseline application is about 3800 lines of C++ code

using MPI and Kokkos

Very little task parallelism; mostly a data parallel

problem

Communication: ghost exchanges, unstructured mesh

May 7, 2015 5



What is MiniAero?

MiniAero is a proxy app illustrating the common

computation and communication patterns in

unstructured mesh codes of interest to Sandia

3D, unstructured, finite volume computational fluid

dynamics code

Uses Runge-Kutta fourth-order time marching

Has options for first and second order spatial

discretization

Includes inviscid Roe and viscous Newtonian flux options

Baseline application is about 3800 lines of C++ code

using MPI and Kokkos

Very little task parallelism; mostly a data parallel

problem

Communication: ghost exchanges, unstructured mesh

May 7, 2015 5



Background and Status

Porting MiniAero to Charm++ began with a “bootcamp”:

March 9-12, 2015

Led by Nikhil Jain and Eric Mikida

About 10 Sandia scientists in attendance

Since the workshop, we've had one scientist working 50% time on the

port and a couple others working 10-20% time

Current state of the code:

running and passes test suite

most immediately apparent optimizations done

SMP version does not work (Kokkos incompatibility)

May 7, 2015 6



Background and Status

Porting MiniAero to Charm++ began with a “bootcamp”:

March 9-12, 2015

Led by Nikhil Jain and Eric Mikida

About 10 Sandia scientists in attendance

Since the workshop, we've had one scientist working 50% time on the

port and a couple others working 10-20% time

Current state of the code:

running and passes test suite

most immediately apparent optimizations done

SMP version does not work (Kokkos incompatibility)

May 7, 2015 6



Background and Status

Porting MiniAero to Charm++ began with a “bootcamp”:

March 9-12, 2015

Led by Nikhil Jain and Eric Mikida

About 10 Sandia scientists in attendance

Since the workshop, we've had one scientist working 50% time on the

port and a couple others working 10-20% time

Current state of the code:

running and passes test suite

most immediately apparent optimizations done

SMP version does not work (Kokkos incompatibility)

May 7, 2015 6



Background and Status

Porting MiniAero to Charm++ began with a “bootcamp”:

March 9-12, 2015

Led by Nikhil Jain and Eric Mikida

About 10 Sandia scientists in attendance

Since the workshop, we've had one scientist working 50% time on the

port and a couple others working 10-20% time

Current state of the code:

running and passes test suite

most immediately apparent optimizations done

SMP version does not work (Kokkos incompatibility)

May 7, 2015 6



Background and Status

Porting MiniAero to Charm++ began with a “bootcamp”:

March 9-12, 2015

Led by Nikhil Jain and Eric Mikida

About 10 Sandia scientists in attendance

Since the workshop, we've had one scientist working 50% time on the

port and a couple others working 10-20% time

Current state of the code:

running and passes test suite

most immediately apparent optimizations done

SMP version does not work (Kokkos incompatibility)

May 7, 2015 6



Background and Status

Porting MiniAero to Charm++ began with a “bootcamp”:

March 9-12, 2015

Led by Nikhil Jain and Eric Mikida

About 10 Sandia scientists in attendance

Since the workshop, we've had one scientist working 50% time on the

port and a couple others working 10-20% time

Current state of the code:

running and passes test suite

most immediately apparent optimizations done

SMP version does not work (Kokkos incompatibility)

May 7, 2015 6



Background and Status

Porting MiniAero to Charm++ began with a “bootcamp”:

March 9-12, 2015

Led by Nikhil Jain and Eric Mikida

About 10 Sandia scientists in attendance

Since the workshop, we've had one scientist working 50% time on the

port and a couple others working 10-20% time

Current state of the code:

running and passes test suite

most immediately apparent optimizations done

SMP version does not work (Kokkos incompatibility)

May 7, 2015 6



Background and Status

Porting MiniAero to Charm++ began with a “bootcamp”:

March 9-12, 2015

Led by Nikhil Jain and Eric Mikida

About 10 Sandia scientists in attendance

Since the workshop, we've had one scientist working 50% time on the

port and a couple others working 10-20% time

Current state of the code:

running and passes test suite

most immediately apparent optimizations done

SMP version does not work (Kokkos incompatibility)

May 7, 2015 6



Background and Status

Porting MiniAero to Charm++ began with a “bootcamp”:

March 9-12, 2015

Led by Nikhil Jain and Eric Mikida

About 10 Sandia scientists in attendance

Since the workshop, we've had one scientist working 50% time on the

port and a couple others working 10-20% time

Current state of the code:

running and passes test suite

most immediately apparent optimizations done

SMP version does not work (Kokkos incompatibility)

May 7, 2015 6



Background and Status

Porting MiniAero to Charm++ began with a “bootcamp”:

March 9-12, 2015

Led by Nikhil Jain and Eric Mikida

About 10 Sandia scientists in attendance

Since the workshop, we've had one scientist working 50% time on the

port and a couple others working 10-20% time

Current state of the code:

running and passes test suite

most immediately apparent optimizations done

SMP version does not work (Kokkos incompatibility)

May 7, 2015 6



Outline

Introduction

The Process: Porting an Explicit Aerodynamics Miniapp to the Chare Model

What was easy?

What was harder?

Preliminary Results and Performance

Next Steps

May 7, 2015 7



What was easy?

Load balancing

(synchronous)

1 // at the end of the timestep...
2 if(doLoadBalance && timestepCounter % loadBalanceInterval == 0) {
3 serial {
4 // Do the actual load rebalancing
5 this->AtSync();
6 }
7 // Called when load balancing is completed (required)
8 when ResumeFromSync() { }
9 }

Checkpointing

To disk

: CkStartCheckpoint(...)

In memory (to partner node)

: CkStartMemCheckpoint(...)

Must be done synchronously

Both of these were key features we wanted to test in AMT runtimes,

both were done essentially on the first day of coding

Both of these require only serialization on the user side

May 7, 2015 8



What was easy?

Load balancing

(synchronous)

1 // at the end of the timestep...
2 if(doLoadBalance && timestepCounter % loadBalanceInterval == 0) {
3 serial {
4 // Do the actual load rebalancing
5 this->AtSync();
6 }
7 // Called when load balancing is completed (required)
8 when ResumeFromSync() { }
9 }

Checkpointing

To disk

: CkStartCheckpoint(...)

In memory (to partner node)

: CkStartMemCheckpoint(...)

Must be done synchronously

Both of these were key features we wanted to test in AMT runtimes,

both were done essentially on the first day of coding

Both of these require only serialization on the user side

May 7, 2015 8



What was easy?

Load balancing (synchronous)

1 // at the end of the timestep...
2 if(doLoadBalance && timestepCounter % loadBalanceInterval == 0) {
3 serial {
4 // Do the actual load rebalancing
5 this->AtSync();
6 }
7 // Called when load balancing is completed (required)
8 when ResumeFromSync() { }
9 }

Checkpointing

To disk

: CkStartCheckpoint(...)

In memory (to partner node)

: CkStartMemCheckpoint(...)

Must be done synchronously

Both of these were key features we wanted to test in AMT runtimes,

both were done essentially on the first day of coding

Both of these require only serialization on the user side

May 7, 2015 8



What was easy?

Load balancing (synchronous)

1 // at the end of the timestep...
2 if(doLoadBalance && timestepCounter % loadBalanceInterval == 0) {
3 serial {
4 // Do the actual load rebalancing
5 this->AtSync();
6 }
7 // Called when load balancing is completed (required)
8 when ResumeFromSync() { }
9 }

Checkpointing

To disk

: CkStartCheckpoint(...)

In memory (to partner node)

: CkStartMemCheckpoint(...)

Must be done synchronously

Both of these were key features we wanted to test in AMT runtimes,

both were done essentially on the first day of coding

Both of these require only serialization on the user side

May 7, 2015 8



What was easy?

Load balancing (synchronous)

1 // at the end of the timestep...
2 if(doLoadBalance && timestepCounter % loadBalanceInterval == 0) {
3 serial {
4 // Do the actual load rebalancing
5 this->AtSync();
6 }
7 // Called when load balancing is completed (required)
8 when ResumeFromSync() { }
9 }

Checkpointing

To disk

: CkStartCheckpoint(...)

In memory (to partner node)

: CkStartMemCheckpoint(...)

Must be done synchronously

Both of these were key features we wanted to test in AMT runtimes,

both were done essentially on the first day of coding

Both of these require only serialization on the user side

May 7, 2015 8



What was easy?

Load balancing (synchronous)

1 // at the end of the timestep...
2 if(doLoadBalance && timestepCounter % loadBalanceInterval == 0) {
3 serial {
4 // Do the actual load rebalancing
5 this->AtSync();
6 }
7 // Called when load balancing is completed (required)
8 when ResumeFromSync() { }
9 }

Checkpointing

To disk

: CkStartCheckpoint(...)

In memory (to partner node)

: CkStartMemCheckpoint(...)

Must be done synchronously

Both of these were key features we wanted to test in AMT runtimes,

both were done essentially on the first day of coding

Both of these require only serialization on the user side

May 7, 2015 8



What was easy?

Load balancing (synchronous)

1 // at the end of the timestep...
2 if(doLoadBalance && timestepCounter % loadBalanceInterval == 0) {
3 serial {
4 // Do the actual load rebalancing
5 this->AtSync();
6 }
7 // Called when load balancing is completed (required)
8 when ResumeFromSync() { }
9 }

Checkpointing

To disk: CkStartCheckpoint(...)

In memory (to partner node)

: CkStartMemCheckpoint(...)

Must be done synchronously

Both of these were key features we wanted to test in AMT runtimes,

both were done essentially on the first day of coding

Both of these require only serialization on the user side

May 7, 2015 8



What was easy?

Load balancing (synchronous)

1 // at the end of the timestep...
2 if(doLoadBalance && timestepCounter % loadBalanceInterval == 0) {
3 serial {
4 // Do the actual load rebalancing
5 this->AtSync();
6 }
7 // Called when load balancing is completed (required)
8 when ResumeFromSync() { }
9 }

Checkpointing

To disk: CkStartCheckpoint(...)

In memory (to partner node)

: CkStartMemCheckpoint(...)
Must be done synchronously

Both of these were key features we wanted to test in AMT runtimes,

both were done essentially on the first day of coding

Both of these require only serialization on the user side

May 7, 2015 8



What was easy?

Load balancing (synchronous)

1 // at the end of the timestep...
2 if(doLoadBalance && timestepCounter % loadBalanceInterval == 0) {
3 serial {
4 // Do the actual load rebalancing
5 this->AtSync();
6 }
7 // Called when load balancing is completed (required)
8 when ResumeFromSync() { }
9 }

Checkpointing

To disk: CkStartCheckpoint(...)

In memory (to partner node): CkStartMemCheckpoint(...)

Must be done synchronously

Both of these were key features we wanted to test in AMT runtimes,

both were done essentially on the first day of coding

Both of these require only serialization on the user side

May 7, 2015 8



What was easy?

Load balancing (synchronous)

1 // at the end of the timestep...
2 if(doLoadBalance && timestepCounter % loadBalanceInterval == 0) {
3 serial {
4 // Do the actual load rebalancing
5 this->AtSync();
6 }
7 // Called when load balancing is completed (required)
8 when ResumeFromSync() { }
9 }

Checkpointing

To disk: CkStartCheckpoint(...)

In memory (to partner node): CkStartMemCheckpoint(...)
Must be done synchronously

Both of these were key features we wanted to test in AMT runtimes,

both were done essentially on the first day of coding

Both of these require only serialization on the user side

May 7, 2015 8



What was easy?

Load balancing (synchronous)

1 // at the end of the timestep...
2 if(doLoadBalance && timestepCounter % loadBalanceInterval == 0) {
3 serial {
4 // Do the actual load rebalancing
5 this->AtSync();
6 }
7 // Called when load balancing is completed (required)
8 when ResumeFromSync() { }
9 }

Checkpointing

To disk: CkStartCheckpoint(...)

In memory (to partner node): CkStartMemCheckpoint(...)
Must be done synchronously

Both of these were key features we wanted to test in AMT runtimes,

both were done essentially on the first day of coding

Both of these require only serialization on the user side

May 7, 2015 8



What was easy?

Load balancing (synchronous)

1 // at the end of the timestep...
2 if(doLoadBalance && timestepCounter % loadBalanceInterval == 0) {
3 serial {
4 // Do the actual load rebalancing
5 this->AtSync();
6 }
7 // Called when load balancing is completed (required)
8 when ResumeFromSync() { }
9 }

Checkpointing

To disk: CkStartCheckpoint(...)

In memory (to partner node): CkStartMemCheckpoint(...)
Must be done synchronously

Both of these were key features we wanted to test in AMT runtimes,

both were done essentially on the first day of coding

Both of these require only serialization on the user side

May 7, 2015 8



MPI⇒ Charm++ is relatively straightforward

“Quick start” implementation: map one chare to one MPI process

Just like in MPI, data dependencies are expressed in terms of messages:

sends become message-like function calls on proxies of array members

receives become when clauses

class OldStuffDoer {
/* ... */
void do_stuff() {

generate data();
/* ... */
MPI_Irecv(data, n_send,

MPI_DOUBLE, partner, /*...*/);
MPI_Send(other_data, n_recv,

MPI_DOUBLE, partner, /*...*/);
use_other_data();

}
};

array [1D] NewStuffDoer {
entry void receive_data(int src,

int ndata, double data[ndata]);
entry void do_stuff_1() {
generate data();
/* ... */
thisProxy[partner].receive_data(

n_send, data
);

};
entry void do_stuff_2() {

when receive_data(int partner,
int n_send, double* other_data)

serial {
memcpy(other_data_, data,
n_send * sizeof(double));

use_other_data();
}

};
};May 7, 2015 9



MPI⇒ Charm++ is relatively straightforward

“Quick start” implementation: map one chare to one MPI process

Just like in MPI, data dependencies are expressed in terms of messages:

sends become message-like function calls on proxies of array members

receives become when clauses

class OldStuffDoer {
/* ... */
void do_stuff() {

generate data();
/* ... */
MPI_Irecv(data, n_send,

MPI_DOUBLE, partner, /*...*/);
MPI_Send(other_data, n_recv,

MPI_DOUBLE, partner, /*...*/);
use_other_data();

}
};

array [1D] NewStuffDoer {
entry void receive_data(int src,

int ndata, double data[ndata]);
entry void do_stuff_1() {
generate data();
/* ... */
thisProxy[partner].receive_data(

n_send, data
);

};
entry void do_stuff_2() {

when receive_data(int partner,
int n_send, double* other_data)

serial {
memcpy(other_data_, data,
n_send * sizeof(double));

use_other_data();
}

};
};May 7, 2015 9



MPI⇒ Charm++ is relatively straightforward

“Quick start” implementation: map one chare to one MPI process

Just like in MPI, data dependencies are expressed in terms of messages:

sends become message-like function calls on proxies of array members

receives become when clauses

class OldStuffDoer {
/* ... */
void do_stuff() {

generate data();
/* ... */
MPI_Irecv(data, n_send,

MPI_DOUBLE, partner, /*...*/);
MPI_Send(other_data, n_recv,

MPI_DOUBLE, partner, /*...*/);
use_other_data();

}
};

array [1D] NewStuffDoer {
entry void receive_data(int src,

int ndata, double data[ndata]);
entry void do_stuff_1() {
generate data();
/* ... */
thisProxy[partner].receive_data(

n_send, data
);

};
entry void do_stuff_2() {

when receive_data(int partner,
int n_send, double* other_data)

serial {
memcpy(other_data_, data,
n_send * sizeof(double));

use_other_data();
}

};
};May 7, 2015 9



MPI⇒ Charm++ is relatively straightforward

“Quick start” implementation: map one chare to one MPI process

Just like in MPI, data dependencies are expressed in terms of messages:

sends become message-like function calls on proxies of array members

receives become when clauses

class OldStuffDoer {
/* ... */
void do_stuff() {

generate data();
/* ... */
MPI_Irecv(data, n_send,

MPI_DOUBLE, partner, /*...*/);
MPI_Send(other_data, n_recv,

MPI_DOUBLE, partner, /*...*/);
use_other_data();

}
};

array [1D] NewStuffDoer {
entry void receive_data(int src,

int ndata, double data[ndata]);
entry void do_stuff_1() {
generate data();
/* ... */
thisProxy[partner].receive_data(

n_send, data
);

};
entry void do_stuff_2() {

when receive_data(int partner,
int n_send, double* other_data)

serial {
memcpy(other_data_, data,
n_send * sizeof(double));

use_other_data();
}

};
};May 7, 2015 9



MPI⇒ Charm++ is relatively straightforward

“Quick start” implementation: map one chare to one MPI process

Just like in MPI, data dependencies are expressed in terms of messages:

sends become message-like function calls on proxies of array members

receives become when clauses

class OldStuffDoer {
/* ... */
void do_stuff() {

generate data();
/* ... */
MPI_Irecv(data, n_send,

MPI_DOUBLE, partner, /*...*/);
MPI_Send(other_data, n_recv,

MPI_DOUBLE, partner, /*...*/);
use_other_data();

}
};

array [1D] NewStuffDoer {
entry void receive_data(int src,

int ndata, double data[ndata]);
entry void do_stuff_1() {
generate data();
/* ... */
thisProxy[partner].receive_data(

n_send, data
);

};
entry void do_stuff_2() {

when receive_data(int partner,
int n_send, double* other_data)

serial {
memcpy(other_data_, data,
n_send * sizeof(double));

use_other_data();
}

};
};May 7, 2015 9



MPI⇒ Charm++ is relatively straightforward

“Quick start” implementation: map one chare to one MPI process

Just like in MPI, data dependencies are expressed in terms of messages:

sends become message-like function calls on proxies of array members

receives become when clauses

class OldStuffDoer {
/* ... */
void do_stuff() {

generate data();
/* ... */
MPI_Irecv(data, n_send,

MPI_DOUBLE, partner, /*...*/);
MPI_Send(other_data, n_recv,

MPI_DOUBLE, partner, /*...*/);
use_other_data();

}
};

array [1D] NewStuffDoer {
entry void receive_data(int src,

int ndata, double data[ndata]);
entry void do_stuff_1() {
generate data();
/* ... */
thisProxy[partner].receive_data(

n_send, data
);

};
entry void do_stuff_2() {

when receive_data(int partner,
int n_send, double* other_data)

serial {
memcpy(other_data_, data,
n_send * sizeof(double));

use_other_data();
}

};
};May 7, 2015 9



MPI⇒ Charm++ is relatively straightforward

“Quick start” implementation: map one chare to one MPI process

Just like in MPI, data dependencies are expressed in terms of messages:

sends become message-like function calls on proxies of array members

receives become when clauses

class OldStuffDoer {
/* ... */
void do_stuff() {

generate data();
/* ... */
MPI_Irecv(data, n_send,

MPI_DOUBLE, partner, /*...*/);
MPI_Send(other_data, n_recv,

MPI_DOUBLE, partner, /*...*/);
use_other_data();

}
};

array [1D] NewStuffDoer {
entry void receive_data(int src,

int ndata, double data[ndata]);
entry void do_stuff_1() {
generate data();
/* ... */
thisProxy[partner].receive_data(

n_send, data
);

};
entry void do_stuff_2() {

when receive_data(int partner,
int n_send, double* other_data)

serial {
memcpy(other_data_, data,
n_send * sizeof(double));

use_other_data();
}

};
};May 7, 2015 9



MPI⇒ Charm++ is relatively straightforward

“Quick start” implementation: map one chare to one MPI process

Just like in MPI, data dependencies are expressed in terms of messages:

sends become message-like function calls on proxies of array members

receives become when clauses

class OldStuffDoer {
/* ... */
void do_stuff() {

generate data();
/* ... */
MPI_Irecv(data, n_send,

MPI_DOUBLE, partner, /*...*/);
MPI_Send(other_data, n_recv,

MPI_DOUBLE, partner, /*...*/);
use_other_data();

}
};

array [1D] NewStuffDoer {
entry void receive_data(int src,

int ndata, double data[ndata]);
entry void do_stuff_1() {
generate data();
/* ... */
thisProxy[partner].receive_data(

n_send, data
);

};
entry void do_stuff_2() {

when receive_data(int partner,
int n_send, double* other_data)

serial {
memcpy(other_data_, data,
n_send * sizeof(double));

use_other_data();
}

};
};

“Gotchas”:

static variables

conditional communication

a lot of size and metadata communication

setup can be skipped

May 7, 2015 9



MPI⇒ Charm++ is relatively straightforward

“Quick start” implementation: map one chare to one MPI process

Just like in MPI, data dependencies are expressed in terms of messages:

sends become message-like function calls on proxies of array members

receives become when clauses

class OldStuffDoer {
/* ... */
void do_stuff() {

generate data();
/* ... */
MPI_Irecv(data, n_send,

MPI_DOUBLE, partner, /*...*/);
MPI_Send(other_data, n_recv,

MPI_DOUBLE, partner, /*...*/);
use_other_data();

}
};

array [1D] NewStuffDoer {
entry void receive_data(int src,

int ndata, double data[ndata]);
entry void do_stuff_1() {
generate data();
/* ... */
thisProxy[partner].receive_data(

n_send, data
);

};
entry void do_stuff_2() {

when receive_data(int partner,
int n_send, double* other_data)

serial {
memcpy(other_data_, data,
n_send * sizeof(double));

use_other_data();
}

};
};

“Gotchas”:

static variables

conditional communication

a lot of size and metadata communication

setup can be skipped

May 7, 2015 9



MPI⇒ Charm++ is relatively straightforward

“Quick start” implementation: map one chare to one MPI process

Just like in MPI, data dependencies are expressed in terms of messages:

sends become message-like function calls on proxies of array members

receives become when clauses

class OldStuffDoer {
/* ... */
void do_stuff() {

generate data();
/* ... */
MPI_Irecv(data, n_send,

MPI_DOUBLE, partner, /*...*/);
MPI_Send(other_data, n_recv,

MPI_DOUBLE, partner, /*...*/);
use_other_data();

}
};

array [1D] NewStuffDoer {
entry void receive_data(int src,

int ndata, double data[ndata]);
entry void do_stuff_1() {
generate data();
/* ... */
thisProxy[partner].receive_data(

n_send, data
);

};
entry void do_stuff_2() {

when receive_data(int partner,
int n_send, double* other_data)

serial {
memcpy(other_data_, data,
n_send * sizeof(double));

use_other_data();
}

};
};

“Gotchas”:

static variables

conditional communication

a lot of size and metadata communication

setup can be skipped

May 7, 2015 9



MPI⇒ Charm++ is relatively straightforward

“Quick start” implementation: map one chare to one MPI process

Just like in MPI, data dependencies are expressed in terms of messages:

sends become message-like function calls on proxies of array members

receives become when clauses

class OldStuffDoer {
/* ... */
void do_stuff() {

generate data();
/* ... */
MPI_Irecv(data, n_send,

MPI_DOUBLE, partner, /*...*/);
MPI_Send(other_data, n_recv,

MPI_DOUBLE, partner, /*...*/);
use_other_data();

}
};

array [1D] NewStuffDoer {
entry void receive_data(int src,

int ndata, double data[ndata]);
entry void do_stuff_1() {
generate data();
/* ... */
thisProxy[partner].receive_data(

n_send, data
);

};
entry void do_stuff_2() {

when receive_data(int partner,
int n_send, double* other_data)

serial {
memcpy(other_data_, data,
n_send * sizeof(double));

use_other_data();
}

};
};

“Gotchas”:

static variables

conditional communication

a lot of size and metadata communication

setup can be skipped

May 7, 2015 9



MPI⇒ Charm++ is relatively straightforward …at first!

Is this the best approach for our workloads, or does it lead to

unnecessary synchronizations being left over from the MPI version?

Two approaches:

“Bottom up”: Map sends and receives to function calls and when s

“Top down”: Think about task structure and dependencies of code, write

this into the .ci file

Clearly, “top down” approach will lead to better, more efficient code in

most cases, but…

For production code, a complete “top down” overhaul is completely

impractical

Is there a good middle ground?

“Bottom up”-ness vs. “top down”-ness of approach should be assessed

before writing too much code (in any porting project)

May 7, 2015 10



MPI⇒ Charm++ is relatively straightforward …at first!

Is this the best approach for our workloads, or does it lead to

unnecessary synchronizations being left over from the MPI version?

Two approaches:

“Bottom up”: Map sends and receives to function calls and when s

“Top down”: Think about task structure and dependencies of code, write

this into the .ci file

Clearly, “top down” approach will lead to better, more efficient code in

most cases, but…

For production code, a complete “top down” overhaul is completely

impractical

Is there a good middle ground?

“Bottom up”-ness vs. “top down”-ness of approach should be assessed

before writing too much code (in any porting project)

May 7, 2015 10



MPI⇒ Charm++ is relatively straightforward …at first!

Is this the best approach for our workloads, or does it lead to

unnecessary synchronizations being left over from the MPI version?

Two approaches:

“Bottom up”: Map sends and receives to function calls and when s

“Top down”: Think about task structure and dependencies of code, write

this into the .ci file

Clearly, “top down” approach will lead to better, more efficient code in

most cases, but…

For production code, a complete “top down” overhaul is completely

impractical

Is there a good middle ground?

“Bottom up”-ness vs. “top down”-ness of approach should be assessed

before writing too much code (in any porting project)

May 7, 2015 10



MPI⇒ Charm++ is relatively straightforward …at first!

Is this the best approach for our workloads, or does it lead to

unnecessary synchronizations being left over from the MPI version?

Two approaches:

“Bottom up”: Map sends and receives to function calls and when s

“Top down”: Think about task structure and dependencies of code, write

this into the .ci file

Clearly, “top down” approach will lead to better, more efficient code in

most cases, but…

For production code, a complete “top down” overhaul is completely

impractical

Is there a good middle ground?

“Bottom up”-ness vs. “top down”-ness of approach should be assessed

before writing too much code (in any porting project)

May 7, 2015 10



MPI⇒ Charm++ is relatively straightforward …at first!

Is this the best approach for our workloads, or does it lead to

unnecessary synchronizations being left over from the MPI version?

Two approaches:

“Bottom up”: Map sends and receives to function calls and when s

“Top down”: Think about task structure and dependencies of code, write

this into the .ci file

Clearly, “top down” approach will lead to better, more efficient code in

most cases, but…

For production code, a complete “top down” overhaul is completely

impractical

Is there a good middle ground?

“Bottom up”-ness vs. “top down”-ness of approach should be assessed

before writing too much code (in any porting project)

May 7, 2015 10



MPI⇒ Charm++ is relatively straightforward …at first!

Is this the best approach for our workloads, or does it lead to

unnecessary synchronizations being left over from the MPI version?

Two approaches:

“Bottom up”: Map sends and receives to function calls and when s

“Top down”: Think about task structure and dependencies of code, write

this into the .ci file

Clearly, “top down” approach will lead to better, more efficient code in

most cases, but…

For production code, a complete “top down” overhaul is completely

impractical

Is there a good middle ground?

“Bottom up”-ness vs. “top down”-ness of approach should be assessed

before writing too much code (in any porting project)

May 7, 2015 10



MPI⇒ Charm++ is relatively straightforward …at first!

Is this the best approach for our workloads, or does it lead to

unnecessary synchronizations being left over from the MPI version?

Two approaches:

“Bottom up”: Map sends and receives to function calls and when s

“Top down”: Think about task structure and dependencies of code, write

this into the .ci file

Clearly, “top down” approach will lead to better, more efficient code in

most cases, but…

For production code, a complete “top down” overhaul is completely

impractical

Is there a good middle ground?

“Bottom up”-ness vs. “top down”-ness of approach should be assessed

before writing too much code (in any porting project)

May 7, 2015 10



MPI⇒ Charm++ is relatively straightforward …at first!

Is this the best approach for our workloads, or does it lead to

unnecessary synchronizations being left over from the MPI version?

Two approaches:

“Bottom up”: Map sends and receives to function calls and when s

“Top down”: Think about task structure and dependencies of code, write

this into the .ci file

Clearly, “top down” approach will lead to better, more efficient code in

most cases, but…

For production code, a complete “top down” overhaul is completely

impractical

Is there a good middle ground?

“Bottom up”-ness vs. “top down”-ness of approach should be assessed

before writing too much code (in any porting project)

May 7, 2015 10



What was harder: Kokkos integration and templated code

Kokkos is a performance portability

layer aimed primarily at on-node

parallelism

handles memory layout and loop

structure to produce optimized

kernels on multiple devices

Application developer implements

generic code, Kokkos library

implements device-specific

specializations

MiniAero was originally written in

“MPI+Kokkos”

What happens when you need to

write templated code that uses

Kokkos?

Explicitly listing all specializations

can get out of hand quickly. For

instance…

1 template <typename Device>
2 struct ddot {
3 const Kokkos::View<Device>& A, B;
4 double result;
5

6 ddot(
7 const Kokkos::View<Device>& A_in,
8 const Kokkos::View<Device>& B_in
9 ) : A(A_in), B(B_in), result(0)

10 { }
11

12 inline void operator()(int i) {
13 result += A(i) * B(i);
14 }
15 };
16

17 void do_stuff() {
18 /* ... */
19 Kokkos::parallel_for(
20 num_items,
21 ddot<Kokkos::Cuda>(v1, v2)
22 );
23 }

May 7, 2015 11



What was harder: Kokkos integration and templated code

Kokkos is a performance portability

layer aimed primarily at on-node

parallelism

handles memory layout and loop

structure to produce optimized

kernels on multiple devices

Application developer implements

generic code, Kokkos library

implements device-specific

specializations

MiniAero was originally written in

“MPI+Kokkos”

What happens when you need to

write templated code that uses

Kokkos?

Explicitly listing all specializations

can get out of hand quickly. For

instance…

1 template <typename Device>
2 struct ddot {
3 const Kokkos::View<Device>& A, B;
4 double result;
5

6 ddot(
7 const Kokkos::View<Device>& A_in,
8 const Kokkos::View<Device>& B_in
9 ) : A(A_in), B(B_in), result(0)

10 { }
11

12 inline void operator()(int i) {
13 result += A(i) * B(i);
14 }
15 };
16

17 void do_stuff() {
18 /* ... */
19 Kokkos::parallel_for(
20 num_items,
21 ddot<Kokkos::Cuda>(v1, v2)
22 );
23 }

May 7, 2015 11



What was harder: Kokkos integration and templated code

Kokkos is a performance portability

layer aimed primarily at on-node

parallelism

handles memory layout and loop

structure to produce optimized

kernels on multiple devices

Application developer implements

generic code, Kokkos library

implements device-specific

specializations

MiniAero was originally written in

“MPI+Kokkos”

What happens when you need to

write templated code that uses

Kokkos?

Explicitly listing all specializations

can get out of hand quickly. For

instance…

1 template <typename Device>
2 struct ddot {
3 const Kokkos::View<Device>& A, B;
4 double result;
5

6 ddot(
7 const Kokkos::View<Device>& A_in,
8 const Kokkos::View<Device>& B_in
9 ) : A(A_in), B(B_in), result(0)

10 { }
11

12 inline void operator()(int i) {
13 result += A(i) * B(i);
14 }
15 };
16

17 void do_stuff() {
18 /* ... */
19 Kokkos::parallel_for(
20 num_items,
21 ddot<Kokkos::Cuda>(v1, v2)
22 );
23 }

May 7, 2015 11



What was harder: Kokkos integration and templated code

Kokkos is a performance portability

layer aimed primarily at on-node

parallelism

handles memory layout and loop

structure to produce optimized

kernels on multiple devices

Application developer implements

generic code, Kokkos library

implements device-specific

specializations

MiniAero was originally written in

“MPI+Kokkos”

What happens when you need to

write templated code that uses

Kokkos?

Explicitly listing all specializations

can get out of hand quickly. For

instance…

1 template <typename Device>
2 struct ddot {
3 const Kokkos::View<Device>& A, B;
4 double result;
5

6 ddot(
7 const Kokkos::View<Device>& A_in,
8 const Kokkos::View<Device>& B_in
9 ) : A(A_in), B(B_in), result(0)

10 { }
11

12 inline void operator()(int i) {
13 result += A(i) * B(i);
14 }
15 };
16

17 void do_stuff() {
18 /* ... */
19 Kokkos::parallel_for(
20 num_items,
21 ddot<Kokkos::Cuda>(v1, v2)
22 );
23 }

May 7, 2015 11



What was harder: Kokkos integration and templated code

Kokkos is a performance portability

layer aimed primarily at on-node

parallelism

handles memory layout and loop

structure to produce optimized

kernels on multiple devices

Application developer implements

generic code, Kokkos library

implements device-specific

specializations

MiniAero was originally written in

“MPI+Kokkos”

What happens when you need to

write templated code that uses

Kokkos?

Explicitly listing all specializations

can get out of hand quickly. For

instance…

1 template <typename Device>
2 struct ddot {
3 const Kokkos::View<Device>& A, B;
4 double result;
5

6 ddot(
7 const Kokkos::View<Device>& A_in,
8 const Kokkos::View<Device>& B_in
9 ) : A(A_in), B(B_in), result(0)

10 { }
11

12 inline void operator()(int i) {
13 result += A(i) * B(i);
14 }
15 };
16

17 void do_stuff() {
18 /* ... */
19 Kokkos::parallel_for(
20 num_items,
21 ddot<Kokkos::Cuda>(v1, v2)
22 );
23 }

May 7, 2015 11



What was harder: Kokkos integration and templated code

Kokkos is a performance portability

layer aimed primarily at on-node

parallelism

handles memory layout and loop

structure to produce optimized

kernels on multiple devices

Application developer implements

generic code, Kokkos library

implements device-specific

specializations

MiniAero was originally written in

“MPI+Kokkos”

What happens when you need to

write templated code that uses

Kokkos?

Explicitly listing all specializations

can get out of hand quickly. For

instance…

1 template <typename Device>
2 struct ddot {
3 const Kokkos::View<Device>& A, B;
4 double result;
5

6 ddot(
7 const Kokkos::View<Device>& A_in,
8 const Kokkos::View<Device>& B_in
9 ) : A(A_in), B(B_in), result(0)

10 { }
11

12 inline void operator()(int i) {
13 result += A(i) * B(i);
14 }
15 };
16

17 void do_stuff() {
18 /* ... */
19 Kokkos::parallel_for(
20 num_items,
21 ddot<Kokkos::Cuda>(v1, v2)
22 );
23 }

May 7, 2015 11



What was harder: Kokkos integration and templated code

Kokkos is a performance portability

layer aimed primarily at on-node

parallelism

handles memory layout and loop

structure to produce optimized

kernels on multiple devices

Application developer implements

generic code, Kokkos library

implements device-specific

specializations

MiniAero was originally written in

“MPI+Kokkos”

What happens when you need to

write templated code that uses

Kokkos?

Explicitly listing all specializations

can get out of hand quickly. For

instance…

1 template <typename Device>
2 struct ddot {
3 const Kokkos::View<Device>& A, B;
4 double result;
5

6 ddot(
7 const Kokkos::View<Device>& A_in,
8 const Kokkos::View<Device>& B_in
9 ) : A(A_in), B(B_in), result(0)

10 { }
11

12 inline void operator()(int i) {
13 result += A(i) * B(i);
14 }
15 };
16

17 void do_stuff() {
18 /* ... */
19 Kokkos::parallel_for(
20 num_items,
21 ddot<Kokkos::Cuda>(v1, v2)
22 );
23 }

May 7, 2015 11



What was harder: Kokkos integration and templated code

Kokkos is a performance portability

layer aimed primarily at on-node

parallelism

handles memory layout and loop

structure to produce optimized

kernels on multiple devices

Application developer implements

generic code, Kokkos library

implements device-specific

specializations

MiniAero was originally written in

“MPI+Kokkos”

What happens when you need to

write templated code that uses

Kokkos?

Explicitly listing all specializations

can get out of hand quickly. For

instance…

1 template <typename Device>
2 struct ddot {
3 const Kokkos::View<Device>& A, B;
4 double result;
5

6 ddot(
7 const Kokkos::View<Device>& A_in,
8 const Kokkos::View<Device>& B_in
9 ) : A(A_in), B(B_in), result(0)

10 { }
11

12 inline void operator()(int i) {
13 result += A(i) * B(i);
14 }
15 };
16

17 void do_stuff() {
18 /* ... */
19 Kokkos::parallel_for(
20 num_items,
21 ddot<Kokkos::Cuda>(v1, v2)
22 );
23 }

May 7, 2015 11



Template specialization explosion

The MiniAero solver has five different ghost exchanges.

Each communicates a different Kokkos::View type

, so we want an

entry method prototype that looks something like this:

1 template <typename ViewType>
2 entry [local] void receive_ghost_data(ViewType& v);

The solver chare is already parameterized on the Kokkos device type:

1 /* solver.ci */
2 template <typename Device>
3 array [1D] RK4Solver {
4 /* ... */
5 };

1 /* solver.h */
2 template <typename Device>
3 class RK4Solver
4 : public CBase_RK4Solver<Device>
5 {
6 Kokkos::View<Device,double*,5> m_data1;
7 Kokkos::View<Device,double*,5,3> m_data2;
8 Kokkos::View<Device,int*> m_data3;
9 /* etc... */

10 };

The devices we'd like to test include Kokkos::Serial ,

Kokkos::Threads , Kokkos::Cuda , and Kokkos::OpenMP

That already leads to 20 different explicit signatures for

receive_ghost_data() .

May 7, 2015 12



Template specialization explosion

The MiniAero solver has five different ghost exchanges.

Each communicates a different Kokkos::View type

, so we want an

entry method prototype that looks something like this:

1 template <typename ViewType>
2 entry [local] void receive_ghost_data(ViewType& v);

The solver chare is already parameterized on the Kokkos device type:

1 /* solver.ci */
2 template <typename Device>
3 array [1D] RK4Solver {
4 /* ... */
5 };

1 /* solver.h */
2 template <typename Device>
3 class RK4Solver
4 : public CBase_RK4Solver<Device>
5 {
6 Kokkos::View<Device,double*,5> m_data1;
7 Kokkos::View<Device,double*,5,3> m_data2;
8 Kokkos::View<Device,int*> m_data3;
9 /* etc... */

10 };

The devices we'd like to test include Kokkos::Serial ,

Kokkos::Threads , Kokkos::Cuda , and Kokkos::OpenMP

That already leads to 20 different explicit signatures for

receive_ghost_data() .

May 7, 2015 12



Template specialization explosion

The MiniAero solver has five different ghost exchanges.

Each communicates a different Kokkos::View type, so we want an

entry method prototype that looks something like this:

1 template <typename ViewType>
2 entry [local] void receive_ghost_data(ViewType& v);

The solver chare is already parameterized on the Kokkos device type:

1 /* solver.ci */
2 template <typename Device>
3 array [1D] RK4Solver {
4 /* ... */
5 };

1 /* solver.h */
2 template <typename Device>
3 class RK4Solver
4 : public CBase_RK4Solver<Device>
5 {
6 Kokkos::View<Device,double*,5> m_data1;
7 Kokkos::View<Device,double*,5,3> m_data2;
8 Kokkos::View<Device,int*> m_data3;
9 /* etc... */

10 };

The devices we'd like to test include Kokkos::Serial ,

Kokkos::Threads , Kokkos::Cuda , and Kokkos::OpenMP

That already leads to 20 different explicit signatures for

receive_ghost_data() .

May 7, 2015 12



Template specialization explosion

The MiniAero solver has five different ghost exchanges.

Each communicates a different Kokkos::View type, so we want an

entry method prototype that looks something like this:

1 template <typename ViewType>
2 entry [local] void receive_ghost_data(ViewType& v);

The solver chare is already parameterized on the Kokkos device type:

1 /* solver.ci */
2 template <typename Device>
3 array [1D] RK4Solver {
4 /* ... */
5 };

1 /* solver.h */
2 template <typename Device>
3 class RK4Solver
4 : public CBase_RK4Solver<Device>
5 {
6 Kokkos::View<Device,double*,5> m_data1;
7 Kokkos::View<Device,double*,5,3> m_data2;
8 Kokkos::View<Device,int*> m_data3;
9 /* etc... */

10 };

The devices we'd like to test include Kokkos::Serial ,

Kokkos::Threads , Kokkos::Cuda , and Kokkos::OpenMP

That already leads to 20 different explicit signatures for

receive_ghost_data() .

May 7, 2015 12



Template specialization explosion

The MiniAero solver has five different ghost exchanges.

Each communicates a different Kokkos::View type, so we want an

entry method prototype that looks something like this:

1 template <typename ViewType>
2 entry [local] void receive_ghost_data(ViewType& v);

The solver chare is already parameterized on the Kokkos device type:

1 /* solver.ci */
2 template <typename Device>
3 array [1D] RK4Solver {
4 /* ... */
5 };

1 /* solver.h */
2 template <typename Device>
3 class RK4Solver
4 : public CBase_RK4Solver<Device>
5 {
6 Kokkos::View<Device,double*,5> m_data1;
7 Kokkos::View<Device,double*,5,3> m_data2;
8 Kokkos::View<Device,int*> m_data3;
9 /* etc... */

10 };

The devices we'd like to test include Kokkos::Serial ,

Kokkos::Threads , Kokkos::Cuda , and Kokkos::OpenMP

That already leads to 20 different explicit signatures for

receive_ghost_data() .

May 7, 2015 12



Template specialization explosion

The MiniAero solver has five different ghost exchanges.

Each communicates a different Kokkos::View type, so we want an

entry method prototype that looks something like this:

1 template <typename ViewType>
2 entry [local] void receive_ghost_data(ViewType& v);

The solver chare is already parameterized on the Kokkos device type:

1 /* solver.ci */
2 template <typename Device>
3 array [1D] RK4Solver {
4 /* ... */
5 };

1 /* solver.h */
2 template <typename Device>
3 class RK4Solver
4 : public CBase_RK4Solver<Device>
5 {
6 Kokkos::View<Device,double*,5> m_data1;
7 Kokkos::View<Device,double*,5,3> m_data2;
8 Kokkos::View<Device,int*> m_data3;
9 /* etc... */

10 };

The devices we'd like to test include Kokkos::Serial ,

Kokkos::Threads , Kokkos::Cuda , and Kokkos::OpenMP

That already leads to 20 different explicit signatures for

receive_ghost_data() .

May 7, 2015 12



Template specialization explosion

The MiniAero solver has five different ghost exchanges.

Each communicates a different Kokkos::View type, so we want an

entry method prototype that looks something like this:

1 template <typename ViewType>
2 entry [local] void receive_ghost_data(ViewType& v);

The solver chare is already parameterized on the Kokkos device type:

1 /* solver.ci */
2 template <typename Device>
3 array [1D] RK4Solver {
4 /* ... */
5 };

1 /* solver.h */
2 template <typename Device>
3 class RK4Solver
4 : public CBase_RK4Solver<Device>
5 {
6 Kokkos::View<Device,double*,5> m_data1;
7 Kokkos::View<Device,double*,5,3> m_data2;
8 Kokkos::View<Device,int*> m_data3;
9 /* etc... */

10 };

The devices we'd like to test include Kokkos::Serial ,

Kokkos::Threads , Kokkos::Cuda , and Kokkos::OpenMP

That already leads to 20 different explicit signatures for

receive_ghost_data() .

May 7, 2015 12



Template specialization explosion

The MiniAero solver has five different ghost exchanges.

Each communicates a different Kokkos::View type, so we want an

entry method prototype that looks something like this:

1 template <typename ViewType>
2 entry [local] void receive_ghost_data(ViewType& v);

The solver chare is already parameterized on the Kokkos device type:

1 /* solver.ci */
2 template <typename Device>
3 array [1D] RK4Solver {
4 /* ... */
5 };

1 /* solver.h */
2 template <typename Device>
3 class RK4Solver
4 : public CBase_RK4Solver<Device>
5 {
6 Kokkos::View<Device,double*,5> m_data1;
7 Kokkos::View<Device,double*,5,3> m_data2;
8 Kokkos::View<Device,int*> m_data3;
9 /* etc... */

10 };

The devices we'd like to test include Kokkos::Serial ,

Kokkos::Threads , Kokkos::Cuda , and Kokkos::OpenMP

That already leads to 20 different explicit signatures for

receive_ghost_data() .

May 7, 2015 12



Template specialization explosion

The MiniAero solver has five different ghost exchanges.

Each communicates a different Kokkos::View type, so we want an

entry method prototype that looks something like this:

1 template <typename ViewType>
2 entry [local] void receive_ghost_data(ViewType& v);

The solver chare is already parameterized on the Kokkos device type:

1 /* solver.ci */
2 template <typename Device>
3 array [1D] RK4Solver {
4 /* ... */
5 };

1 /* solver.h */
2 template <typename Device>
3 class RK4Solver
4 : public CBase_RK4Solver<Device>
5 {
6 Kokkos::View<Device,double*,5> m_data1;
7 Kokkos::View<Device,double*,5,3> m_data2;
8 Kokkos::View<Device,int*> m_data3;
9 /* etc... */

10 };

The devices we'd like to test include Kokkos::Serial ,

Kokkos::Threads , Kokkos::Cuda , and Kokkos::OpenMP

That already leads to 20 different explicit signatures for

receive_ghost_data() .May 7, 2015 12



Template specialization: our workaround

Pattern: templated setup, non-templated entry method, templated cleanup

/* comm_stuff.h */
template <typename Device>
class CommStuffDoer :

public CBase_CommStuffDoer<Device>
{

Kokkos::View<Device,double*,3> my_data_1_;
Kokkos::View<Device,int*,3,5> my_data_2_;
/* ... */
std::vector<double*> recv_buffers_;
template <typename ViewT>
void send_it(int dst, const ViewT& data) {

size_t size = get_size(data, dst);
double* data = extract_data(data, dst);
this->thisProxy[dst].recv_it(

this->thisIndex, size, data);
}
template <typename ViewT>
void setup_recv(int src, ViewT& data) {
recv_buffers_[src] =

get_buffer(data, src);
}
template <typename ViewT>
void finish_recv(int src, ViewT& data) {
insert_data(data, recv_buffers_[src], src);
delete recv_buffers_[src];

}
};

/* comm_stuff.ci */
template <typename Device>
array [1D] CommStuffDoer {

entry void recv_it(int src,
int size, double data[size]);

entry void do_recv_done();
entry [local] void do_recv(int src) {

when recv_it[src](int s, int size,
double data[size]) serial {

memcpy(recv_buffers[src], data,
size*sizeof(double));

do_recv_done();
}

};
entry void do_stuff() {

/* ... */
serial {

int src = /*...*/, dest = /*...*/;
send_it(dest, my_data_1_);
setup_recv(src, my_data_1_);
do_recv(src);

}
when do_recv_done() serial {

finish_recv(src, my_data_1_);
}

};
};

May 7, 2015 13



Template specialization: our workaround

Pattern: templated setup, non-templated entry method, templated cleanup

/* comm_stuff.h */
template <typename Device>
class CommStuffDoer :

public CBase_CommStuffDoer<Device>
{

Kokkos::View<Device,double*,3> my_data_1_;
Kokkos::View<Device,int*,3,5> my_data_2_;
/* ... */
std::vector<double*> recv_buffers_;
template <typename ViewT>
void send_it(int dst, const ViewT& data) {

size_t size = get_size(data, dst);
double* data = extract_data(data, dst);
this->thisProxy[dst].recv_it(

this->thisIndex, size, data);
}
template <typename ViewT>
void setup_recv(int src, ViewT& data) {
recv_buffers_[src] =

get_buffer(data, src);
}
template <typename ViewT>
void finish_recv(int src, ViewT& data) {
insert_data(data, recv_buffers_[src], src);
delete recv_buffers_[src];

}
};

/* comm_stuff.ci */
template <typename Device>
array [1D] CommStuffDoer {

entry void recv_it(int src,
int size, double data[size]);

entry void do_recv_done();
entry [local] void do_recv(int src) {

when recv_it[src](int s, int size,
double data[size]) serial {

memcpy(recv_buffers[src], data,
size*sizeof(double));

do_recv_done();
}

};
entry void do_stuff() {

/* ... */
serial {

int src = /*...*/, dest = /*...*/;
send_it(dest, my_data_1_);
setup_recv(src, my_data_1_);
do_recv(src);

}
when do_recv_done() serial {

finish_recv(src, my_data_1_);
}

};
};

May 7, 2015 13



Template specialization: our workaround

Pattern: templated setup, non-templated entry method, templated cleanup

/* comm_stuff.h */
template <typename Device>
class CommStuffDoer :

public CBase_CommStuffDoer<Device>
{

Kokkos::View<Device,double*,3> my_data_1_;
Kokkos::View<Device,int*,3,5> my_data_2_;
/* ... */
std::vector<double*> recv_buffers_;
template <typename ViewT>
void send_it(int dst, const ViewT& data) {

size_t size = get_size(data, dst);
double* data = extract_data(data, dst);
this->thisProxy[dst].recv_it(

this->thisIndex, size, data);
}
template <typename ViewT>
void setup_recv(int src, ViewT& data) {
recv_buffers_[src] =

get_buffer(data, src);
}
template <typename ViewT>
void finish_recv(int src, ViewT& data) {
insert_data(data, recv_buffers_[src], src);
delete recv_buffers_[src];

}
};

/* comm_stuff.ci */
template <typename Device>
array [1D] CommStuffDoer {

entry void recv_it(int src,
int size, double data[size]);

entry void do_recv_done();
entry [local] void do_recv(int src) {

when recv_it[src](int s, int size,
double data[size]) serial {

memcpy(recv_buffers[src], data,
size*sizeof(double));

do_recv_done();
}

};
entry void do_stuff() {

/* ... */
serial {

int src = /*...*/, dest = /*...*/;
send_it(dest, my_data_1_);
setup_recv(src, my_data_1_);
do_recv(src);

}
when do_recv_done() serial {

finish_recv(src, my_data_1_);
}

};
};

May 7, 2015 13



Template specialization: our workaround

Pattern: templated setup, non-templated entry method, templated cleanup

/* comm_stuff.h */
template <typename Device>
class CommStuffDoer :

public CBase_CommStuffDoer<Device>
{

Kokkos::View<Device,double*,3> my_data_1_;
Kokkos::View<Device,int*,3,5> my_data_2_;
/* ... */
std::vector<double*> recv_buffers_;
template <typename ViewT>
void send_it(int dst, const ViewT& data) {

size_t size = get_size(data, dst);
double* data = extract_data(data, dst);
this->thisProxy[dst].recv_it(

this->thisIndex, size, data);
}
template <typename ViewT>
void setup_recv(int src, ViewT& data) {
recv_buffers_[src] =

get_buffer(data, src);
}
template <typename ViewT>
void finish_recv(int src, ViewT& data) {
insert_data(data, recv_buffers_[src], src);
delete recv_buffers_[src];

}
};

/* comm_stuff.ci */
template <typename Device>
array [1D] CommStuffDoer {

entry void recv_it(int src,
int size, double data[size]);

entry void do_recv_done();
entry [local] void do_recv(int src) {

when recv_it[src](int s, int size,
double data[size]) serial {

memcpy(recv_buffers[src], data,
size*sizeof(double));

do_recv_done();
}

};
entry void do_stuff() {

/* ... */
serial {

int src = /*...*/, dest = /*...*/;
send_it(dest, my_data_1_);
setup_recv(src, my_data_1_);
do_recv(src);

}
when do_recv_done() serial {

finish_recv(src, my_data_1_);
}

};
};

May 7, 2015 13



Template specialization: our workaround

Pattern: templated setup, non-templated entry method, templated cleanup

/* comm_stuff.h */
template <typename Device>
class CommStuffDoer :

public CBase_CommStuffDoer<Device>
{

Kokkos::View<Device,double*,3> my_data_1_;
Kokkos::View<Device,int*,3,5> my_data_2_;
/* ... */
std::vector<double*> recv_buffers_;
template <typename ViewT>
void send_it(int dst, const ViewT& data) {

size_t size = get_size(data, dst);
double* data = extract_data(data, dst);
this->thisProxy[dst].recv_it(

this->thisIndex, size, data);
}
template <typename ViewT>
void setup_recv(int src, ViewT& data) {
recv_buffers_[src] =

get_buffer(data, src);
}
template <typename ViewT>
void finish_recv(int src, ViewT& data) {
insert_data(data, recv_buffers_[src], src);
delete recv_buffers_[src];

}
};

/* comm_stuff.ci */
template <typename Device>
array [1D] CommStuffDoer {

entry void recv_it(int src,
int size, double data[size]);

entry void do_recv_done();
entry [local] void do_recv(int src) {

when recv_it[src](int s, int size,
double data[size]) serial {

memcpy(recv_buffers[src], data,
size*sizeof(double));

do_recv_done();
}

};
entry void do_stuff() {

/* ... */
serial {

int src = /*...*/, dest = /*...*/;
send_it(dest, my_data_1_);
setup_recv(src, my_data_1_);
do_recv(src);

}
when do_recv_done() serial {

finish_recv(src, my_data_1_);
}

};
};

May 7, 2015 13



Template specialization: our workaround

Pattern: templated setup, non-templated entry method, templated cleanup

/* comm_stuff.h */
template <typename Device>
class CommStuffDoer :

public CBase_CommStuffDoer<Device>
{

Kokkos::View<Device,double*,3> my_data_1_;
Kokkos::View<Device,int*,3,5> my_data_2_;
/* ... */
std::vector<double*> recv_buffers_;
template <typename ViewT>
void send_it(int dst, const ViewT& data) {

size_t size = get_size(data, dst);
double* data = extract_data(data, dst);
this->thisProxy[dst].recv_it(

this->thisIndex, size, data);
}
template <typename ViewT>
void setup_recv(int src, ViewT& data) {
recv_buffers_[src] =

get_buffer(data, src);
}
template <typename ViewT>
void finish_recv(int src, ViewT& data) {
insert_data(data, recv_buffers_[src], src);
delete recv_buffers_[src];

}
};

/* comm_stuff.ci */
template <typename Device>
array [1D] CommStuffDoer {

entry void recv_it(int src,
int size, double data[size]);

entry void do_recv_done();
entry [local] void do_recv(int src) {

when recv_it[src](int s, int size,
double data[size]) serial {

memcpy(recv_buffers[src], data,
size*sizeof(double));

do_recv_done();
}

};
entry void do_stuff() {

/* ... */
serial {

int src = /*...*/, dest = /*...*/;
send_it(dest, my_data_1_);
setup_recv(src, my_data_1_);
do_recv(src);

}
when do_recv_done() serial {

finish_recv(src, my_data_1_);
}

};
};

May 7, 2015 13



Template specialization: our workaround

Pattern: templated setup, non-templated entry method, templated cleanup

/* comm_stuff.h */
template <typename Device>
class CommStuffDoer :

public CBase_CommStuffDoer<Device>
{

Kokkos::View<Device,double*,3> my_data_1_;
Kokkos::View<Device,int*,3,5> my_data_2_;
/* ... */
std::vector<double*> recv_buffers_;
template <typename ViewT>
void send_it(int dst, const ViewT& data) {

size_t size = get_size(data, dst);
double* data = extract_data(data, dst);
this->thisProxy[dst].recv_it(

this->thisIndex, size, data);
}
template <typename ViewT>
void setup_recv(int src, ViewT& data) {
recv_buffers_[src] =

get_buffer(data, src);
}
template <typename ViewT>
void finish_recv(int src, ViewT& data) {
insert_data(data, recv_buffers_[src], src);
delete recv_buffers_[src];

}
};

/* comm_stuff.ci */
template <typename Device>
array [1D] CommStuffDoer {

entry void recv_it(int src,
int size, double data[size]);

entry void do_recv_done();
entry [local] void do_recv(int src) {

when recv_it[src](int s, int size,
double data[size]) serial {

memcpy(recv_buffers[src], data,
size*sizeof(double));

do_recv_done();
}

};
entry void do_stuff() {

/* ... */
serial {

int src = /*...*/, dest = /*...*/;
send_it(dest, my_data_1_);
setup_recv(src, my_data_1_);
do_recv(src);

}
when do_recv_done() serial {

finish_recv(src, my_data_1_);
}

};
};

May 7, 2015 13



Template specialization: our workaround

Pattern: templated setup, non-templated entry method, templated cleanup

/* comm_stuff.h */
template <typename Device>
class CommStuffDoer :

public CBase_CommStuffDoer<Device>
{

Kokkos::View<Device,double*,3> my_data_1_;
Kokkos::View<Device,int*,3,5> my_data_2_;
/* ... */
std::vector<double*> recv_buffers_;
template <typename ViewT>
void send_it(int dst, const ViewT& data) {

size_t size = get_size(data, dst);
double* data = extract_data(data, dst);
this->thisProxy[dst].recv_it(

this->thisIndex, size, data);
}
template <typename ViewT>
void setup_recv(int src, ViewT& data) {
recv_buffers_[src] =

get_buffer(data, src);
}
template <typename ViewT>
void finish_recv(int src, ViewT& data) {
insert_data(data, recv_buffers_[src], src);
delete recv_buffers_[src];

}
};

/* comm_stuff.ci */
template <typename Device>
array [1D] CommStuffDoer {

entry void recv_it(int src,
int size, double data[size]);

entry void do_recv_done();
entry [local] void do_recv(int src) {

when recv_it[src](int s, int size,
double data[size]) serial {

memcpy(recv_buffers[src], data,
size*sizeof(double));

do_recv_done();
}

};
entry void do_stuff() {

/* ... */
serial {

int src = /*...*/, dest = /*...*/;
send_it(dest, my_data_1_);
setup_recv(src, my_data_1_);
do_recv(src);

}
when do_recv_done() serial {

finish_recv(src, my_data_1_);
}

};
};

May 7, 2015 13



Template specialization: our workaround

Pattern: templated setup, non-templated entry method, templated cleanup

/* comm_stuff.h */
template <typename Device>
class CommStuffDoer :

public CBase_CommStuffDoer<Device>
{

Kokkos::View<Device,double*,3> my_data_1_;
Kokkos::View<Device,int*,3,5> my_data_2_;
/* ... */
std::vector<double*> recv_buffers_;
template <typename ViewT>
void send_it(int dst, const ViewT& data) {

size_t size = get_size(data, dst);
double* data = extract_data(data, dst);
this->thisProxy[dst].recv_it(

this->thisIndex, size, data);
}
template <typename ViewT>
void setup_recv(int src, ViewT& data) {
recv_buffers_[src] =

get_buffer(data, src);
}
template <typename ViewT>
void finish_recv(int src, ViewT& data) {
insert_data(data, recv_buffers_[src], src);
delete recv_buffers_[src];

}
};

/* comm_stuff.ci */
template <typename Device>
array [1D] CommStuffDoer {

entry void recv_it(int src,
int size, double data[size]);

entry void do_recv_done();
entry [local] void do_recv(int src) {

when recv_it[src](int s, int size,
double data[size]) serial {

memcpy(recv_buffers[src], data,
size*sizeof(double));

do_recv_done();
}

};
entry void do_stuff() {

/* ... */
serial {

int src = /*...*/, dest = /*...*/;
send_it(dest, my_data_1_);
setup_recv(src, my_data_1_);
do_recv(src);

}
when do_recv_done() serial {

finish_recv(src, my_data_1_);
}

};
};

May 7, 2015 13



Template specialization: our workaround

Pattern: templated setup, non-templated entry method, templated cleanup

/* comm_stuff.h */
template <typename Device>
class CommStuffDoer :

public CBase_CommStuffDoer<Device>
{

Kokkos::View<Device,double*,3> my_data_1_;
Kokkos::View<Device,int*,3,5> my_data_2_;
/* ... */
std::vector<double*> recv_buffers_;
template <typename ViewT>
void send_it(int dst, const ViewT& data) {

size_t size = get_size(data, dst);
double* data = extract_data(data, dst);
this->thisProxy[dst].recv_it(

this->thisIndex, size, data);
}
template <typename ViewT>
void setup_recv(int src, ViewT& data) {
recv_buffers_[src] =

get_buffer(data, src);
}
template <typename ViewT>
void finish_recv(int src, ViewT& data) {
insert_data(data, recv_buffers_[src], src);
delete recv_buffers_[src];

}
};

/* comm_stuff.ci */
template <typename Device>
array [1D] CommStuffDoer {

entry void recv_it(int src,
int size, double data[size]);

entry void do_recv_done();
entry [local] void do_recv(int src) {

when recv_it[src](int s, int size,
double data[size]) serial {

memcpy(recv_buffers[src], data,
size*sizeof(double));

do_recv_done();
}

};
entry void do_stuff() {

/* ... */
serial {

int src = /*...*/, dest = /*...*/;
send_it(dest, my_data_1_);
setup_recv(src, my_data_1_);
do_recv(src);

}
when do_recv_done() serial {

finish_recv(src, my_data_1_);
}

};
};

May 7, 2015 13



Template specialization: our workaround

Pattern: templated setup, non-templated entry method, templated cleanup

/* comm_stuff.h */
template <typename Device>
class CommStuffDoer :

public CBase_CommStuffDoer<Device>
{

Kokkos::View<Device,double*,3> my_data_1_;
Kokkos::View<Device,int*,3,5> my_data_2_;
/* ... */
std::vector<double*> recv_buffers_;
template <typename ViewT>
void send_it(int dst, const ViewT& data) {

size_t size = get_size(data, dst);
double* data = extract_data(data, dst);
this->thisProxy[dst].recv_it(

this->thisIndex, size, data);
}
template <typename ViewT>
void setup_recv(int src, ViewT& data) {
recv_buffers_[src] =

get_buffer(data, src);
}
template <typename ViewT>
void finish_recv(int src, ViewT& data) {
insert_data(data, recv_buffers_[src], src);
delete recv_buffers_[src];

}
};

/* comm_stuff.ci */
template <typename Device>
array [1D] CommStuffDoer {

entry void recv_it(int src,
int size, double data[size]);

entry void do_recv_done();
entry [local] void do_recv(int src) {

when recv_it[src](int s, int size,
double data[size]) serial {

memcpy(recv_buffers[src], data,
size*sizeof(double));

do_recv_done();
}

};
entry void do_stuff() {

/* ... */
serial {

int src = /*...*/, dest = /*...*/;
send_it(dest, my_data_1_);
setup_recv(src, my_data_1_);
do_recv(src);

}
when do_recv_done() serial {

finish_recv(src, my_data_1_);
}

};
};

May 7, 2015 13



Template specialization: our workaround

Pattern: templated setup, non-templated entry method, templated cleanup

/* comm_stuff.h */
template <typename Device>
class CommStuffDoer :

public CBase_CommStuffDoer<Device>
{

Kokkos::View<Device,double*,3> my_data_1_;
Kokkos::View<Device,int*,3,5> my_data_2_;
/* ... */
std::vector<double*> recv_buffers_;
template <typename ViewT>
void send_it(int dst, const ViewT& data) {

size_t size = get_size(data, dst);
double* data = extract_data(data, dst);
this->thisProxy[dst].recv_it(

this->thisIndex, size, data);
}
template <typename ViewT>
void setup_recv(int src, ViewT& data) {
recv_buffers_[src] =

get_buffer(data, src);
}
template <typename ViewT>
void finish_recv(int src, ViewT& data) {
insert_data(data, recv_buffers_[src], src);
delete recv_buffers_[src];

}
};

/* comm_stuff.ci */
template <typename Device>
array [1D] CommStuffDoer {

entry void recv_it(int src,
int size, double data[size]);

entry void do_recv_done();
entry [local] void do_recv(int src) {

when recv_it[src](int s, int size,
double data[size]) serial {

memcpy(recv_buffers[src], data,
size*sizeof(double));

do_recv_done();
}

};
entry void do_stuff() {

/* ... */
serial {

int src = /*...*/, dest = /*...*/;
send_it(dest, my_data_1_);
setup_recv(src, my_data_1_);
do_recv(src);

}
when do_recv_done() serial {

finish_recv(src, my_data_1_);
}

};
};

May 7, 2015 13



Template specialization: our workaround

Pattern: templated setup, non-templated entry method, templated cleanup

/* comm_stuff.h */
template <typename Device>
class CommStuffDoer :

public CBase_CommStuffDoer<Device>
{

Kokkos::View<Device,double*,3> my_data_1_;
Kokkos::View<Device,int*,3,5> my_data_2_;
/* ... */
std::vector<double*> recv_buffers_;
template <typename ViewT>
void send_it(int dst, const ViewT& data) {

size_t size = get_size(data, dst);
double* data = extract_data(data, dst);
this->thisProxy[dst].recv_it(

this->thisIndex, size, data);
}
template <typename ViewT>
void setup_recv(int src, ViewT& data) {
recv_buffers_[src] =

get_buffer(data, src);
}
template <typename ViewT>
void finish_recv(int src, ViewT& data) {
insert_data(data, recv_buffers_[src], src);
delete recv_buffers_[src];

}
};

/* comm_stuff.ci */
template <typename Device>
array [1D] CommStuffDoer {

entry void recv_it(int src,
int size, double data[size]);

entry void do_recv_done();
entry [local] void do_recv(int src) {

when recv_it[src](int s, int size,
double data[size]) serial {

memcpy(recv_buffers[src], data,
size*sizeof(double));

do_recv_done();
}

};
entry void do_stuff() {

/* ... */
serial {

int src = /*...*/, dest = /*...*/;
send_it(dest, my_data_1_);
setup_recv(src, my_data_1_);
do_recv(src);

}
when do_recv_done() serial {

finish_recv(src, my_data_1_);
}

};
};

May 7, 2015 13



Template specialization: our workaround

Pattern: templated setup, non-templated entry method, templated cleanup

/* comm_stuff.h */
template <typename Device>
class CommStuffDoer :

public CBase_CommStuffDoer<Device>
{

Kokkos::View<Device,double*,3> my_data_1_;
Kokkos::View<Device,int*,3,5> my_data_2_;
/* ... */
std::vector<double*> recv_buffers_;
template <typename ViewT>
void send_it(int dst, const ViewT& data) {

size_t size = get_size(data, dst);
double* data = extract_data(data, dst);
this->thisProxy[dst].recv_it(

this->thisIndex, size, data);
}
template <typename ViewT>
void setup_recv(int src, ViewT& data) {
recv_buffers_[src] =

get_buffer(data, src);
}
template <typename ViewT>
void finish_recv(int src, ViewT& data) {
insert_data(data, recv_buffers_[src], src);
delete recv_buffers_[src];

}
};

/* comm_stuff.ci */
template <typename Device>
array [1D] CommStuffDoer {

entry void recv_it(int src,
int size, double data[size]);

entry void do_recv_done();
entry [local] void do_recv(int src) {

when recv_it[src](int s, int size,
double data[size]) serial {

memcpy(recv_buffers[src], data,
size*sizeof(double));

do_recv_done();
}

};
entry void do_stuff() {

/* ... */
serial {

int src = /*...*/, dest = /*...*/;
send_it(dest, my_data_1_);
setup_recv(src, my_data_1_);
do_recv(src);

}
when do_recv_done() serial {

finish_recv(src, my_data_1_);
}

};
};

Is this ideal?

Obviously not

May 7, 2015 13



Template specialization: our workaround

Pattern: templated setup, non-templated entry method, templated cleanup

/* comm_stuff.h */
template <typename Device>
class CommStuffDoer :

public CBase_CommStuffDoer<Device>
{

Kokkos::View<Device,double*,3> my_data_1_;
Kokkos::View<Device,int*,3,5> my_data_2_;
/* ... */
std::vector<double*> recv_buffers_;
template <typename ViewT>
void send_it(int dst, const ViewT& data) {

size_t size = get_size(data, dst);
double* data = extract_data(data, dst);
this->thisProxy[dst].recv_it(

this->thisIndex, size, data);
}
template <typename ViewT>
void setup_recv(int src, ViewT& data) {
recv_buffers_[src] =

get_buffer(data, src);
}
template <typename ViewT>
void finish_recv(int src, ViewT& data) {
insert_data(data, recv_buffers_[src], src);
delete recv_buffers_[src];

}
};

/* comm_stuff.ci */
template <typename Device>
array [1D] CommStuffDoer {

entry void recv_it(int src,
int size, double data[size]);

entry void do_recv_done();
entry [local] void do_recv(int src) {

when recv_it[src](int s, int size,
double data[size]) serial {

memcpy(recv_buffers[src], data,
size*sizeof(double));

do_recv_done();
}

};
entry void do_stuff() {

/* ... */
serial {

int src = /*...*/, dest = /*...*/;
send_it(dest, my_data_1_);
setup_recv(src, my_data_1_);
do_recv(src);

}
when do_recv_done() serial {

finish_recv(src, my_data_1_);
}

};
};

Is this typical of the effort required to

make templated code work with an

asynchronous many-task runtime

system (AMT RTS)?

Maybe

May 7, 2015 13



Template specialization: our workaround

Pattern: templated setup, non-templated entry method, templated cleanup

/* comm_stuff.h */
template <typename Device>
class CommStuffDoer :

public CBase_CommStuffDoer<Device>
{

Kokkos::View<Device,double*,3> my_data_1_;
Kokkos::View<Device,int*,3,5> my_data_2_;
/* ... */
std::vector<double*> recv_buffers_;
template <typename ViewT>
void send_it(int dst, const ViewT& data) {

size_t size = get_size(data, dst);
double* data = extract_data(data, dst);
this->thisProxy[dst].recv_it(

this->thisIndex, size, data);
}
template <typename ViewT>
void setup_recv(int src, ViewT& data) {
recv_buffers_[src] =

get_buffer(data, src);
}
template <typename ViewT>
void finish_recv(int src, ViewT& data) {
insert_data(data, recv_buffers_[src], src);
delete recv_buffers_[src];

}
};

/* comm_stuff.ci */
template <typename Device>
array [1D] CommStuffDoer {

entry void recv_it(int src,
int size, double data[size]);

entry void do_recv_done();
entry [local] void do_recv(int src) {

when recv_it[src](int s, int size,
double data[size]) serial {

memcpy(recv_buffers[src], data,
size*sizeof(double));

do_recv_done();
}

};
entry void do_stuff() {

/* ... */
serial {

int src = /*...*/, dest = /*...*/;
send_it(dest, my_data_1_);
setup_recv(src, my_data_1_);
do_recv(src);

}
when do_recv_done() serial {

finish_recv(src, my_data_1_);
}

};
};

Does Charm++ even support

templated entry methods inside

templated chares?

(We couldn't figure out how to do it)

May 7, 2015 13



Distinguishing Entry Methods from Regular Method Calls

Suppose all of the

do_stuff_*() methods are

ordinary, non-entry methods.

What happens first?

Now suppose do_stuff_1()
is an entry method and

do_stuff_2() is a normal

method.

Now what happens first?

How does the programmer who

didn't write do_stuff_1()
know this?

Perhaps using naming

conventions? (e.g., EM_*() )

1 entry void do_stuff() {
2 serial {
3 do_stuff_1();
4 do_stuff_2();
5 }
6 };

1 entry void EM_do_stuff() {
2 serial {
3 EM_do_stuff_1();
4 do_stuff_2();
5 }
6 };

In short, mixing entry method calls and regular method calls without using

naming conventions makes it difficult to write self-documenting code

May 7, 2015 14



Distinguishing Entry Methods from Regular Method Calls

Suppose all of the

do_stuff_*() methods are

ordinary, non-entry methods.

What happens first?

Now suppose do_stuff_1()
is an entry method and

do_stuff_2() is a normal

method.

Now what happens first?

How does the programmer who

didn't write do_stuff_1()
know this?

Perhaps using naming

conventions? (e.g., EM_*() )

1 entry void do_stuff() {
2 serial {
3 do_stuff_1();
4 do_stuff_2();
5 }
6 };

1 entry void EM_do_stuff() {
2 serial {
3 EM_do_stuff_1();
4 do_stuff_2();
5 }
6 };

In short, mixing entry method calls and regular method calls without using

naming conventions makes it difficult to write self-documenting code

May 7, 2015 14



Distinguishing Entry Methods from Regular Method Calls

Suppose all of the

do_stuff_*() methods are

ordinary, non-entry methods.

What happens first?

Now suppose do_stuff_1()
is an entry method and

do_stuff_2() is a normal

method.

Now what happens first?

How does the programmer who

didn't write do_stuff_1()
know this?

Perhaps using naming

conventions? (e.g., EM_*() )

1 entry void do_stuff() {
2 serial {
3 do_stuff_1();
4 do_stuff_2();
5 }
6 };

1 entry void EM_do_stuff() {
2 serial {
3 EM_do_stuff_1();
4 do_stuff_2();
5 }
6 };

In short, mixing entry method calls and regular method calls without using

naming conventions makes it difficult to write self-documenting code

May 7, 2015 14



Distinguishing Entry Methods from Regular Method Calls

Suppose all of the

do_stuff_*() methods are

ordinary, non-entry methods.

What happens first?

Now suppose do_stuff_1()
is an entry method and

do_stuff_2() is a normal

method.

Now what happens first?

How does the programmer who

didn't write do_stuff_1()
know this?

Perhaps using naming

conventions? (e.g., EM_*() )

1 entry void do_stuff() {
2 serial {
3 do_stuff_1();
4 do_stuff_2();
5 }
6 };

1 entry void EM_do_stuff() {
2 serial {
3 EM_do_stuff_1();
4 do_stuff_2();
5 }
6 };

In short, mixing entry method calls and regular method calls without using

naming conventions makes it difficult to write self-documenting code

May 7, 2015 14



Distinguishing Entry Methods from Regular Method Calls

Suppose all of the

do_stuff_*() methods are

ordinary, non-entry methods.

What happens first?

Now suppose do_stuff_1()
is an entry method and

do_stuff_2() is a normal

method.

Now what happens first?

How does the programmer who

didn't write do_stuff_1()
know this?

Perhaps using naming

conventions? (e.g., EM_*() )

1 entry void do_stuff() {
2 serial {
3 do_stuff_1();
4 do_stuff_2();
5 }
6 };

1 entry void EM_do_stuff() {
2 serial {
3 EM_do_stuff_1();
4 do_stuff_2();
5 }
6 };

In short, mixing entry method calls and regular method calls without using

naming conventions makes it difficult to write self-documenting code

May 7, 2015 14



Distinguishing Entry Methods from Regular Method Calls

Suppose all of the

do_stuff_*() methods are

ordinary, non-entry methods.

What happens first?

Now suppose do_stuff_1()
is an entry method and

do_stuff_2() is a normal

method.

Now what happens first?

How does the programmer who

didn't write do_stuff_1()
know this?

Perhaps using naming

conventions? (e.g., EM_*() )

1 entry void do_stuff() {
2 serial {
3 do_stuff_1();
4 do_stuff_2();
5 }
6 };

1 entry void EM_do_stuff() {
2 serial {
3 EM_do_stuff_1();
4 do_stuff_2();
5 }
6 };

In short, mixing entry method calls and regular method calls without using

naming conventions makes it difficult to write self-documenting code

May 7, 2015 14



Distinguishing Entry Methods from Regular Method Calls

Suppose all of the

do_stuff_*() methods are

ordinary, non-entry methods.

What happens first?

Now suppose do_stuff_1()
is an entry method and

do_stuff_2() is a normal

method.

Now what happens first?

How does the programmer who

didn't write do_stuff_1()
know this?

Perhaps using naming

conventions? (e.g., EM_*() )

1 entry void do_stuff() {
2 serial {
3 do_stuff_1();
4 do_stuff_2();
5 }
6 };

1 entry void EM_do_stuff() {
2 serial {
3 EM_do_stuff_1();
4 do_stuff_2();
5 }
6 };

In short, mixing entry method calls and regular method calls without using

naming conventions makes it difficult to write self-documenting code

May 7, 2015 14



Distinguishing Entry Methods from Regular Method Calls

Suppose all of the

do_stuff_*() methods are

ordinary, non-entry methods.

What happens first?

Now suppose do_stuff_1()
is an entry method and

do_stuff_2() is a normal

method.

Now what happens first?

How does the programmer who

didn't write do_stuff_1()
know this?

Perhaps using naming

conventions? (e.g., EM_*() )

1 entry void do_stuff() {
2 serial {
3 do_stuff_1();
4 do_stuff_2();
5 }
6 };

1 entry void EM_do_stuff() {
2 serial {
3 EM_do_stuff_1();
4 do_stuff_2();
5 }
6 };

In short, mixing entry method calls and regular method calls without using

naming conventions makes it difficult to write self-documenting code

May 7, 2015 14



Distinguishing Entry Methods from Regular Method Calls

Suppose all of the

do_stuff_*() methods are

ordinary, non-entry methods.

What happens first?

Now suppose do_stuff_1()
is an entry method and

do_stuff_2() is a normal

method.

Now what happens first?

How does the programmer who

didn't write do_stuff_1()
know this?

Perhaps using naming

conventions? (e.g., EM_*() )

1 entry void do_stuff() {
2 serial {
3 do_stuff_1();
4 do_stuff_2();
5 }
6 };

1 entry void EM_do_stuff() {
2 serial {
3 EM_do_stuff_1();
4 do_stuff_2();
5 }
6 };

In short, mixing entry method calls and regular method calls without using

naming conventions makes it difficult to write self-documenting code

May 7, 2015 14



Distinguishing Entry Methods from Regular Method Calls

Further complication:

non-blocking calls from a

blocking context

In fact, do_stuff_2() may

only be blockingmost or the

time, but occasionally contain

non-blocking calls

In this case, how does the

programmer make the control

flow of the program apparent to

future programmers?

Avoid writing code like this?

Avoid naming conventions?

Makes the programmer “get

used to” the idea that any

method invocation in a .ci file

could be non-blocking

Just use comments?

1 /* stuff_doer.ci */
2 chare StuffDoer {
3 entry void EM_do_stuff() {
4 serial {
5 EM_do_stuff_1();
6 do_stuff_2();
7 do_stuff_3();
8 }
9 };

10 };

1 /* stuff_doer.h */
2 class StuffDoer
3 : public CBase_StuffDoer {
4 /*...*/
5 void do_stuff_2() {
6 // uh-oh
7 thisProxy.EM_do_stuff_4();
8 }
9 };

1 /* stuff_doer.h */
2 class StuffDoer
3 : public CBase_StuffDoer {
4 /*...*/
5 void do_stuff_2() {
6 if(some_rare_condition) {
7 thisProxy.EM_do_stuff_4();
8 }
9 /* ... */

10 }
11 };

May 7, 2015 15



Distinguishing Entry Methods from Regular Method Calls

Further complication:

non-blocking calls from a

blocking context

In fact, do_stuff_2() may

only be blockingmost or the

time, but occasionally contain

non-blocking calls

In this case, how does the

programmer make the control

flow of the program apparent to

future programmers?

Avoid writing code like this?

Avoid naming conventions?

Makes the programmer “get

used to” the idea that any

method invocation in a .ci file

could be non-blocking

Just use comments?

1 /* stuff_doer.ci */
2 chare StuffDoer {
3 entry void EM_do_stuff() {
4 serial {
5 EM_do_stuff_1();
6 do_stuff_2();
7 do_stuff_3();
8 }
9 };

10 };

1 /* stuff_doer.h */
2 class StuffDoer
3 : public CBase_StuffDoer {
4 /*...*/
5 void do_stuff_2() {
6 // uh-oh
7 thisProxy.EM_do_stuff_4();
8 }
9 };

1 /* stuff_doer.h */
2 class StuffDoer
3 : public CBase_StuffDoer {
4 /*...*/
5 void do_stuff_2() {
6 if(some_rare_condition) {
7 thisProxy.EM_do_stuff_4();
8 }
9 /* ... */

10 }
11 };

May 7, 2015 15



Distinguishing Entry Methods from Regular Method Calls

Further complication:

non-blocking calls from a

blocking context

In fact, do_stuff_2() may

only be blockingmost or the

time, but occasionally contain

non-blocking calls

In this case, how does the

programmer make the control

flow of the program apparent to

future programmers?

Avoid writing code like this?

Avoid naming conventions?

Makes the programmer “get

used to” the idea that any

method invocation in a .ci file

could be non-blocking

Just use comments?

1 /* stuff_doer.ci */
2 chare StuffDoer {
3 entry void EM_do_stuff() {
4 serial {
5 EM_do_stuff_1();
6 do_stuff_2();
7 do_stuff_3();
8 }
9 };

10 };

1 /* stuff_doer.h */
2 class StuffDoer
3 : public CBase_StuffDoer {
4 /*...*/
5 void do_stuff_2() {
6 // uh-oh
7 thisProxy.EM_do_stuff_4();
8 }
9 };

1 /* stuff_doer.h */
2 class StuffDoer
3 : public CBase_StuffDoer {
4 /*...*/
5 void do_stuff_2() {
6 if(some_rare_condition) {
7 thisProxy.EM_do_stuff_4();
8 }
9 /* ... */

10 }
11 };

May 7, 2015 15



Distinguishing Entry Methods from Regular Method Calls

Further complication:

non-blocking calls from a

blocking context

In fact, do_stuff_2() may

only be blockingmost or the

time, but occasionally contain

non-blocking calls

In this case, how does the

programmer make the control

flow of the program apparent to

future programmers?

Avoid writing code like this?

Avoid naming conventions?

Makes the programmer “get

used to” the idea that any

method invocation in a .ci file

could be non-blocking

Just use comments?

1 /* stuff_doer.ci */
2 chare StuffDoer {
3 entry void EM_do_stuff() {
4 serial {
5 EM_do_stuff_1();
6 do_stuff_2();
7 do_stuff_3();
8 }
9 };

10 };

1 /* stuff_doer.h */
2 class StuffDoer
3 : public CBase_StuffDoer {
4 /*...*/
5 void do_stuff_2() {
6 // uh-oh
7 thisProxy.EM_do_stuff_4();
8 }
9 };

1 /* stuff_doer.h */
2 class StuffDoer
3 : public CBase_StuffDoer {
4 /*...*/
5 void do_stuff_2() {
6 if(some_rare_condition) {
7 thisProxy.EM_do_stuff_4();
8 }
9 /* ... */

10 }
11 };

May 7, 2015 15



Distinguishing Entry Methods from Regular Method Calls

Further complication:

non-blocking calls from a

blocking context

In fact, do_stuff_2() may

only be blockingmost or the

time, but occasionally contain

non-blocking calls

In this case, how does the

programmer make the control

flow of the program apparent to

future programmers?

Avoid writing code like this?

Avoid naming conventions?

Makes the programmer “get

used to” the idea that any

method invocation in a .ci file

could be non-blocking

Just use comments?

1 /* stuff_doer.ci */
2 chare StuffDoer {
3 entry void EM_do_stuff() {
4 serial {
5 EM_do_stuff_1();
6 do_stuff_2();
7 do_stuff_3();
8 }
9 };

10 };

1 /* stuff_doer.h */
2 class StuffDoer
3 : public CBase_StuffDoer {
4 /*...*/
5 void do_stuff_2() {
6 // uh-oh
7 thisProxy.EM_do_stuff_4();
8 }
9 };

1 /* stuff_doer.h */
2 class StuffDoer
3 : public CBase_StuffDoer {
4 /*...*/
5 void do_stuff_2() {
6 if(some_rare_condition) {
7 thisProxy.EM_do_stuff_4();
8 }
9 /* ... */

10 }
11 };

May 7, 2015 15



Distinguishing Entry Methods from Regular Method Calls

Further complication:

non-blocking calls from a

blocking context

In fact, do_stuff_2() may

only be blockingmost or the

time, but occasionally contain

non-blocking calls

In this case, how does the

programmer make the control

flow of the program apparent to

future programmers?

Avoid writing code like this?

Avoid naming conventions?

Makes the programmer “get

used to” the idea that any

method invocation in a .ci file

could be non-blocking

Just use comments?

1 /* stuff_doer.ci */
2 chare StuffDoer {
3 entry void EM_do_stuff() {
4 serial {
5 EM_do_stuff_1();
6 do_stuff_2();
7 do_stuff_3();
8 }
9 };

10 };

1 /* stuff_doer.h */
2 class StuffDoer
3 : public CBase_StuffDoer {
4 /*...*/
5 void do_stuff_2() {
6 // uh-oh
7 thisProxy.EM_do_stuff_4();
8 }
9 };

1 /* stuff_doer.h */
2 class StuffDoer
3 : public CBase_StuffDoer {
4 /*...*/
5 void do_stuff_2() {
6 if(some_rare_condition) {
7 thisProxy.EM_do_stuff_4();
8 }
9 /* ... */

10 }
11 };

May 7, 2015 15



Distinguishing Entry Methods from Regular Method Calls

Further complication:

non-blocking calls from a

blocking context

In fact, do_stuff_2() may

only be blockingmost or the

time, but occasionally contain

non-blocking calls

In this case, how does the

programmer make the control

flow of the program apparent to

future programmers?

Avoid writing code like this?

Avoid naming conventions?

Makes the programmer “get

used to” the idea that any

method invocation in a .ci file

could be non-blocking

Just use comments?

1 /* stuff_doer.ci */
2 chare StuffDoer {
3 entry void EM_do_stuff() {
4 serial {
5 EM_do_stuff_1();
6 do_stuff_2();
7 do_stuff_3();
8 }
9 };

10 };

1 /* stuff_doer.h */
2 class StuffDoer
3 : public CBase_StuffDoer {
4 /*...*/
5 void do_stuff_2() {
6 // uh-oh
7 thisProxy.EM_do_stuff_4();
8 }
9 };

1 /* stuff_doer.h */
2 class StuffDoer
3 : public CBase_StuffDoer {
4 /*...*/
5 void do_stuff_2() {
6 if(some_rare_condition) {
7 thisProxy.EM_do_stuff_4();
8 }
9 /* ... */

10 }
11 };

May 7, 2015 15



Distinguishing Entry Methods from Regular Method Calls

Further complication:

non-blocking calls from a

blocking context

In fact, do_stuff_2() may

only be blockingmost or the

time, but occasionally contain

non-blocking calls

In this case, how does the

programmer make the control

flow of the program apparent to

future programmers?

Avoid writing code like this?

Avoid naming conventions?

Makes the programmer “get

used to” the idea that any

method invocation in a .ci file

could be non-blocking

Just use comments?

1 /* stuff_doer.ci */
2 chare StuffDoer {
3 entry void EM_do_stuff() {
4 serial {
5 EM_do_stuff_1();
6 do_stuff_2();
7 do_stuff_3();
8 }
9 };

10 };

1 /* stuff_doer.h */
2 class StuffDoer
3 : public CBase_StuffDoer {
4 /*...*/
5 void do_stuff_2() {
6 // uh-oh
7 thisProxy.EM_do_stuff_4();
8 }
9 };

1 /* stuff_doer.h */
2 class StuffDoer
3 : public CBase_StuffDoer {
4 /*...*/
5 void do_stuff_2() {
6 if(some_rare_condition) {
7 thisProxy.EM_do_stuff_4();
8 }
9 /* ... */

10 }
11 };

May 7, 2015 15



Outline

Introduction

The Process: Porting an Explicit Aerodynamics Miniapp to the Chare Model

What was easy?

What was harder?

Preliminary Results and Performance

Next Steps

May 7, 2015 16



Performance vs. MPI Version: Weak Scaling

May 7, 2015 17



Performance: Overdecomposition and Runtime Overhead

256 Chares on 128 PEs 1024 Chares on 128 PEs

Application code in green, runtime overhead in red, idle time in white

(Insets are enlargements of y-axes)
May 7, 2015 18



Performance: Overdecomposition and Runtime Overhead

256 Chares on 128 PEs 1024 Chares on 128 PEs

20
%
fa
st
er

20
%
fa
st
er

Application code in green, runtime overhead in red, idle time in white

(Insets are enlargements of y-axes)
May 7, 2015 18



Outline

Introduction

The Process: Porting an Explicit Aerodynamics Miniapp to the Chare Model

What was easy?

What was harder?

Preliminary Results and Performance

Next Steps

May 7, 2015 19



Next Steps

More performance analysis

PAPI?

More Kokkos devices (Cuda?)

More miniapps

May 7, 2015 20



Next Steps

More performance analysis

PAPI?

More Kokkos devices (Cuda?)

More miniapps

May 7, 2015 20



Next Steps

More performance analysis

PAPI?

More Kokkos devices (Cuda?)

More miniapps

May 7, 2015 20



Next Steps

More performance analysis

PAPI?

More Kokkos devices (Cuda?)

More miniapps

May 7, 2015 20



Next Steps

More performance analysis

PAPI?

More Kokkos devices (Cuda?)

More miniapps

May 7, 2015 20



Questions?

Questions?

May 7, 2015 21



Extra Slides

Extra Slides

May 7, 2015 22



Overdecomposition and Zero-Copy Semantics

The “Charm + X” model:

Charm++:

dynamic,

inter-node

parallelism

“X”: static,

on-node

parallelism;

vectorization

Zero-copy semantics and some shared data model or data warehouse

are critical to mitigating the AMT runtime overhead from

overdecomposition

Charm++ allows zero copy transfer of data between chares on-node

using PackedMessage s

But these are an “advanced feature,” much more difficult than PUP ing

The concept of a shared data block is missing

For instance, PackedMessage s have no access privileges (e.g., read

only, shared read/write, exclusive read/write)

Dynamic, on-node

parallelism arising from

overdecomposition

May 7, 2015 23



Overdecomposition and Zero-Copy Semantics

The “Charm + X” model:

Charm++:

dynamic,

inter-node

parallelism

“X”: static,

on-node

parallelism;

vectorization

Zero-copy semantics and some shared data model or data warehouse

are critical to mitigating the AMT runtime overhead from

overdecomposition

Charm++ allows zero copy transfer of data between chares on-node

using PackedMessage s

But these are an “advanced feature,” much more difficult than PUP ing

The concept of a shared data block is missing

For instance, PackedMessage s have no access privileges (e.g., read

only, shared read/write, exclusive read/write)

Dynamic, on-node

parallelism arising from

overdecomposition

May 7, 2015 23



Overdecomposition and Zero-Copy Semantics

The “Charm + X” model:

Charm++:

dynamic,

inter-node

parallelism

“X”: static,

on-node

parallelism;

vectorization

Zero-copy semantics and some shared data model or data warehouse

are critical to mitigating the AMT runtime overhead from

overdecomposition

Charm++ allows zero copy transfer of data between chares on-node

using PackedMessage s

But these are an “advanced feature,” much more difficult than PUP ing

The concept of a shared data block is missing

For instance, PackedMessage s have no access privileges (e.g., read

only, shared read/write, exclusive read/write)

Dynamic, on-node

parallelism arising from

overdecomposition

May 7, 2015 23



Overdecomposition and Zero-Copy Semantics

The “Charm + X” model:

Charm++:

dynamic,

inter-node

parallelism

“X”: static,

on-node

parallelism;

vectorization

Zero-copy semantics and some shared data model or data warehouse

are critical to mitigating the AMT runtime overhead from

overdecomposition

Charm++ allows zero copy transfer of data between chares on-node

using PackedMessage s

But these are an “advanced feature,” much more difficult than PUP ing

The concept of a shared data block is missing

For instance, PackedMessage s have no access privileges (e.g., read

only, shared read/write, exclusive read/write)

Dynamic, on-node

parallelism arising from

overdecomposition

May 7, 2015 23



Overdecomposition and Zero-Copy Semantics

The “Charm + X” model:

Charm++:

dynamic,

inter-node

parallelism

“X”: static,

on-node

parallelism;

vectorization

Zero-copy semantics and some shared data model or data warehouse

are critical to mitigating the AMT runtime overhead from

overdecomposition

Charm++ allows zero copy transfer of data between chares on-node

using PackedMessage s

But these are an “advanced feature,” much more difficult than PUP ing

The concept of a shared data block is missing

For instance, PackedMessage s have no access privileges (e.g., read

only, shared read/write, exclusive read/write)

Dynamic, on-node

parallelism arising from

overdecomposition

May 7, 2015 23



Overdecomposition and Zero-Copy Semantics

The “Charm + X” model:

Charm++:

dynamic,

inter-node

parallelism

“X”: static,

on-node

parallelism;

vectorization

Zero-copy semantics and some shared data model or data warehouse

are critical to mitigating the AMT runtime overhead from

overdecomposition

Charm++ allows zero copy transfer of data between chares on-node

using PackedMessage s

But these are an “advanced feature,” much more difficult than PUP ing

The concept of a shared data block is missing

For instance, PackedMessage s have no access privileges (e.g., read

only, shared read/write, exclusive read/write)

Dynamic, on-node

parallelism arising from

overdecomposition

May 7, 2015 23



Overdecomposition and Zero-Copy Semantics

The “Charm + X” model:

Charm++:

dynamic,

inter-node

parallelism

“X”: static,

on-node

parallelism;

vectorization

Zero-copy semantics and some shared data model or data warehouse

are critical to mitigating the AMT runtime overhead from

overdecomposition

Charm++ allows zero copy transfer of data between chares on-node

using PackedMessage s

But these are an “advanced feature,” much more difficult than PUP ing

The concept of a shared data block is missing

For instance, PackedMessage s have no access privileges (e.g., read

only, shared read/write, exclusive read/write)

Dynamic, on-node

parallelism arising from

overdecomposition

May 7, 2015 23



Overdecomposition and Zero-Copy Semantics

The “Charm + X” model:

Charm++:

dynamic,

inter-node

parallelism

“X”: static,

on-node

parallelism;

vectorization

Zero-copy semantics and some shared data model or data warehouse

are critical to mitigating the AMT runtime overhead from

overdecomposition

Charm++ allows zero copy transfer of data between chares on-node

using PackedMessage s

But these are an “advanced feature,” much more difficult than PUP ing

The concept of a shared data block is missing

For instance, PackedMessage s have no access privileges (e.g., read

only, shared read/write, exclusive read/write)

Dynamic, on-node

parallelism arising from

overdecomposition

May 7, 2015 23



Other minor issues

The Charm++ compiler

.ci file compiler issues

(e.g., } inside C++ style comments not ignored?)

Would be nice if it could run like a preprocessor to generate code, then

regular compiler could be used after that.

SMP version: no way to initialize libraries on main thread?

May 7, 2015 24



Other minor issues

The Charm++ compiler

.ci file compiler issues

(e.g., } inside C++ style comments not ignored?)

Would be nice if it could run like a preprocessor to generate code, then

regular compiler could be used after that.

SMP version: no way to initialize libraries on main thread?

May 7, 2015 24



Other minor issues

The Charm++ compiler

.ci file compiler issues

(e.g., } inside C++ style comments not ignored?)

Would be nice if it could run like a preprocessor to generate code, then

regular compiler could be used after that.

SMP version: no way to initialize libraries on main thread?

May 7, 2015 24



Other minor issues

The Charm++ compiler

.ci file compiler issues

(e.g., } inside C++ style comments not ignored?)

Would be nice if it could run like a preprocessor to generate code, then

regular compiler could be used after that.

SMP version: no way to initialize libraries on main thread?

May 7, 2015 24



Other minor issues

The Charm++ compiler

.ci file compiler issues

(e.g., } inside C++ style comments not ignored?)

Would be nice if it could run like a preprocessor to generate code, then

regular compiler could be used after that.

SMP version: no way to initialize libraries on main thread?

May 7, 2015 24



Conclusions

How does the programming experience in Charm++ compare to other

runtimes?

Inconclusive so far. Charm++ MiniAero was a port, others were complete

rewrites

How does the performance of Charm++ compare to other runtimes?

Inconclusive so far. Other MiniAero versions are in various states of

completeness

But… our current implementation is already comparable to MPI

May 7, 2015 25



Conclusions

How does the programming experience in Charm++ compare to other

runtimes?

Inconclusive so far. Charm++ MiniAero was a port, others were complete

rewrites

How does the performance of Charm++ compare to other runtimes?

Inconclusive so far. Other MiniAero versions are in various states of

completeness

But… our current implementation is already comparable to MPI

May 7, 2015 25



Conclusions

How does the programming experience in Charm++ compare to other

runtimes?

Inconclusive so far. Charm++ MiniAero was a port, others were complete

rewrites

How does the performance of Charm++ compare to other runtimes?

Inconclusive so far. Other MiniAero versions are in various states of

completeness

But… our current implementation is already comparable to MPI

May 7, 2015 25



Conclusions

How does the programming experience in Charm++ compare to other

runtimes?

Inconclusive so far. Charm++ MiniAero was a port, others were complete

rewrites

How does the performance of Charm++ compare to other runtimes?

Inconclusive so far. Other MiniAero versions are in various states of

completeness

But… our current implementation is already comparable to MPI

May 7, 2015 25



Conclusions

How does the programming experience in Charm++ compare to other

runtimes?

Inconclusive so far. Charm++ MiniAero was a port, others were complete

rewrites

How does the performance of Charm++ compare to other runtimes?

Inconclusive so far. Other MiniAero versions are in various states of

completeness

But… our current implementation is already comparable to MPI

May 7, 2015 25



Conclusions

How does the programming experience in Charm++ compare to other

runtimes?

Inconclusive so far. Charm++ MiniAero was a port, others were complete

rewrites

How does the performance of Charm++ compare to other runtimes?

Inconclusive so far. Other MiniAero versions are in various states of

completeness

But… our current implementation is already comparable to MPI

May 7, 2015 25


	Introduction
	The Process: Porting an Explicit Aerodynamics Miniapp to the Chare Model
	What was easy?
	What was harder?

	Preliminary Results and Performance
	Next Steps

