# Saving Energy by Exploiting Residual Imbalance on Iterative Applications

Edson L. Padoin, Laércio L. Pilla, Márcio Castro, Philippe O. A. Navaux and Jean-François Méhaut

Federal University of Rio Grande do Sul – BR CEA/LIG/University of Grenoble – FR











#### Motivation

- Energy consumption
  - -Key issue to build **Exascale systems**
  - -DARPA limits consumption in 20 MWatt
- Current top performance HPC systems
  –PFlops while consuming MWatts
  - Tianhe-2 #1 Top500
    - -33.8 PFlops
    - -17.8 MWatt
    - -1.9 GFlops/Watt



#### Motivation

#### Load imbalance

- -May pass unnoticed
- -All sockets
  - Constant power demand
  - Similar energy consumption
  - Energy waste



#### Motivation

- Goal
  - -Minimize energy consumption while considering core workload
    - Performance with less power
- Proposal
  - -Combine dynamic load balancing with DVFS
    - Energy Daemon + Charm++/AMPI

#### Agenda

- Motivation
- Energy Daemon and EnergyLB
- Experiments
  - -First Prototype
  - -Second Prototype
- Concluding Remarks

# Energy Daemon and EnergyLB

 Energy Daemon MSR Core 0 MSR Core 1 -Gets/computes MSR Core 2 MSR Core 3 Energy Power -Traces execution –Works on Intel and ARM



# Energy Daemon and EnergyLB

### EnergyLB

- -Charm++ module
  - LB framework
- -Computes residual imbalance
- –Controls clock frequency
  - Less loaded, less frequency



# Energy Daemon and EnergyLB

# EnergyLB

-Current prototypes

Centralized version

-Attached to other LB to DVFS

-Uses one core per socket

#### Hierarchical version

- -Root load balancer
- -Another LB per socket
- -Uses all cores

#### -EnergyLB does not migrate tasks

- Platform: SGI UV2000
  - -24 Intel Xeon E5-4640 8 cores (192 cores)
    - Clock frequency range
      - -maximum: 2.4 GHz
      - -minimum: 1.2 GHz
    - DVFS control per socket
  - -756 GB of DDR3 memory



- First prototype
  –POA\_bench
  - More parameters



- First prototype
  –POA\_bench
  - More parameters



# First prototype –POA\_bench



# First prototype –POA\_bench



- Second prototype
  –Ondes3D
  - Seismic wave simulator
  - MPI -> AMPI

-512 VPs on 192 cores

• Dynamic load imbalance

#### Second prototype

|                       | Power (W) | % to no LB | Energy (Kj) | % to no LB | Time (s) | % to no LB |
|-----------------------|-----------|------------|-------------|------------|----------|------------|
| No LB                 | 49.6      |            | 425.8       |            | 357.7    |            |
| GreedyLB              | 50.3      | +1.45%     | 472.5       | +10.98%    | 391.3    | +9.39%     |
| RefineLB              | 52.7      | +6.31%     | 372.2       | -12.59%    | 294.1    | -17.78%    |
| EnergyLB<br>+RefineLB | 38.7      | -22.02%    | 330.1       | -22.46%    | 355.7    | -0.56%     |

#### Second prototype

|                       | Power (W) | % to no LB | Energy (Kj) | % to no LB | Time (s) | % to no LB |
|-----------------------|-----------|------------|-------------|------------|----------|------------|
| No LB                 | 49.6      |            | 425.8       |            | 357.7    |            |
| GreedyLB              | 50.3      | +1.45%     | 472.5       | +10.98%    | 391.3    | +9.39%     |
| RefineLB              | 52.7      | +6.31%     | 372.2       | -12.59%    | 294.1    | -17.78%    |
| EnergyLB<br>+RefineLB | 38.7      | -22.02%    | 330.1       | -22.46%    | 355.7    | -0.56%     |

**Energy consumption** 



#### Second prototype

|                       | Power (W) | % to no LB | Energy (Kj) | % to no LB | Time (s) | % to no LB |
|-----------------------|-----------|------------|-------------|------------|----------|------------|
| No LB                 | 49.6      |            | 425.8       |            | 357.7    |            |
| GreedyLB              | 50.3      | +1.45%     | 472.5       | +10.98%    | 391.3    | +9.39%     |
| RefineLB              | 52.7      | +6.31%     | 372.2       | -12.59%    | 294.1    | -17.78%    |
| EnergyLB<br>+RefineLB | 38.7      | -22.02%    | 330.1       | -22.46%    | 355.7    | -0.56%     |

#### **Execution time**



# **Concluding Remarks**

# • Goal

- -Minimize energy consumption while considering core workload
  - Performance with less power
- Proposal
  - -Combine dynamic load balancing with DVFS
    - Energy Daemon + Charm++/AMPI
    - Two prototypes

#### **Concluding Remarks**

#### First prototype

-Energy gains between 4% and 13%

### Second prototype

 Energy gains of 22% but no performance gains

### **Concluding Remarks**

#### • Future work

#### -Evolve hierarchical prototype

• Migrate tasks between sockets

#### -More experiments

More platforms

-Heterogeneous

More applications

# Saving Energy by Exploiting Residual Imbalance on Iterative Applications

Edson L. Padoin, Laércio L. Pilla, Márcio Castro, Philippe O. A. Navaux and Jean-François Méhaut

Federal University of Rio Grande do Sul – BR CEA/LIG/University of Grenoble – FR









