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Continuous Dynamic Load Balancing 
•  Irregular parallel applications 

•  Irregular and unpredictable structure 
•  Nested or recursive parallelism 
•  Dynamic generation of units of computation 
•  Available parallelism heavily depends on input data 
•  Require continuous dynamic load balancing 
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Optimization and search problems N-Body problems 



Dynamic Load Balancing Model 
!
TaskPool.initialize(initial tasks)!
While (t    TaskPool.get())!

!t.execute()!
!
!
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In execute(), one may call TaskPool.put()!

Idle time in TaskPool.get()!



How to Eliminate Idle Time? – Prefetching 
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How to Eliminate Idle Time? – Prefetching 

12 

Thread 1 Thread 2 

•  Unpredictable workload 
•  Data dependence and limited 

parallelism 



How to Eliminate Idle Time? – Speculation 
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Thread 1 Thread 2 
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Thread 1 Thread 2 



How to Eliminate Idle Time? – Speculation 
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Thread 1 Thread 2 Arbitration Request 



How to Eliminate Idle Time? – Speculation 
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Thread 1 Thread 2 Speculation Fail 



Work Sharing Algorithm 
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Manager 

Thread 0 Thread 1 Thread 2 Thread 3 

Work Request Work Request Work Request 
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Work Sharing Algorithm 
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Manager 

Thread 0 Thread 1 Thread 2 Thread 3 



Speculative Work Sharing Algorithm 
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Manager 

Thread 0 Thread 1 Thread 2 Thread 3 

Work Request Work Request Work Request 



Speculative Work Sharing Algorithm 
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Manager Thread Some Worker Thread 
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Speculative Work Sharing Algorithm 
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Manager Thread Some Worker Thread 

Arbitration Request for A 

A 



Speculative Work Sharing Algorithm 
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Manager Thread Some Worker Thread 

Arbitration Request for B 

A 

B 



Speculative Work Sharing Algorithm 
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Manager Thread Some Worker Thread 

Arbitration Request for E 

A 

B 

C 

D 

E 



Speculative Work Sharing Algorithm 
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Manager Thread Some Worker Thread 

A 
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Response for A: Success 

Commit 



Speculative Work Sharing Algorithm 

27 

Manager Thread Some Worker Thread 

B 
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Response for B: Success 

Commit 



Speculative Work Sharing Algorithm 
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Manager Thread Some Worker Thread 

C 

D 

E 

Response for C: Fail 

Roll Back 

Roll Back 

Roll Back 

Delete 



Speculative Work Sharing Algorithm 
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Manager Thread Some Worker Thread 

Work Request 



• Counting nodes in randomly generated 
tree 

•  Tree generation is based on separable 
cryptographic random number generator 
  childCount = f(nodeId)!
  childId = SHA1(nodeId, childIndex)!

• Different types of trees 
•  Binomial (probability q, # of child m) 
•  Geometric (depth limit d, branching factor is 

geometric distribution with mean b) 

Unbalanced Tree Search (UTS) 
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Work Sharing in UTS 
• A node in tree is a unit of work 
• A chunk is a set of nodes, and minimum transferrable unit 
• Release interval is the frequency with which a worker 

releases a chunk to the manager 

If (HasSurplusWork() and !
    NodesProcessed % release_inerval == 0)!
{!

!ReleaseWork()!
}!
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Experimental Setup and Inputs 
•  Illinois Campus Cluster 

•  Cluster of HP ProLiant Servers 
•  2 Intel X5650 2.66Ghz 6Core Processors per Node 
•  High Speed Infiniband Cluster Interconnect  
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Binomial 
(109 Nodes) 

Geometry 
(109 Nodes) 

Small 0.111 0.102 
Medium 2.79 1.64 
Large 10.6 4.23 
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Tuning of Original Algorithm – Small Input 
(on 4 nodes, 12 cores each) 
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Original Speculative 
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•  Optimal values: (128, 12) 
•  Some results for large input on 8 

nodes 
 
 

Time (s) 
(128, 8) 

Time (s) 
(128, 12) 

Original 50.385 26.681 

Speculative 18.902 18.886 



Scalability Study – Geometric Tree 
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Conclusion 
• Speculation  

•  Is a light-weight technique in load-balancing algorithms 
•  Is a potential solution to eliminate idle time 
•  Reduces sensitivity of a load-balancing algorithm to parameters 
•  Helps to reduce tuning efforts 
•  Exhibits a higher scalability 
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BACK UP SLIDES 
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Design Guidelines 
•  The time it takes to process a speculative task is far less 

than the time it takes to get response of an arbitration 
•  A worker may need multiple speculative tasks at a time 

•  Low overhead algorithm to get speculative task 
•  Minimal speculative task transfer (i.e. minimizing speculative task 

destroy) 

• Quality of an speculative task decreases over time 
•  Move actual task a worker has, less speculative task it should carry 

• Quality of an speculative task increases as it goes deeper 
in its owner’s actual queue 
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Does Speculation Help Work Stealing? 
• Base-line algorithm + speculative algorithm guidelines = 

speculative work stealing (Algorithm A) 
• Speculative work stealing + replacing speculative 

messages with prefetching = optimized prefetch-based 
work stealing (Algorithm B) 

•  “A” has a slight performance benefit over “B” (less than 5 
percent overall) 
•  Reason: Even the base-line does not have too much idle time in 

UTS 
• … But, speculative work stealing is helpful in problems 

where there is a limited parallelism due to data 
dependence 
•  Example: Depth-first traversal of a graph 
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