
SPECULATIVE
LOAD BALANCING

Hassan Eslami
William D. Gropp

Department of Computer Science

University of Illinois at Urbana Champaign

Continuous Dynamic Load Balancing
•  Irregular parallel applications

•  Irregular and unpredictable structure
•  Nested or recursive parallelism
•  Dynamic generation of units of computation
•  Available parallelism heavily depends on input data
•  Require continuous dynamic load balancing

2

Optimization and search problems N-Body problems

Dynamic Load Balancing Model
!
TaskPool.initialize(initial tasks)!
While (t TaskPool.get())!

!t.execute()!
!
!

3

In execute(), one may call TaskPool.put()!

Idle time in TaskPool.get()!

How to Eliminate Idle Time? – Prefetching

4

Thread 1 Thread 2

How to Eliminate Idle Time? – Prefetching

5

Thread 1 Thread 2

How to Eliminate Idle Time? – Prefetching

6

Thread 1 Thread 2

How to Eliminate Idle Time? – Prefetching

7

Thread 1 Thread 2

How to Eliminate Idle Time? – Prefetching

8

Thread 1 Thread 2

How to Eliminate Idle Time? – Prefetching

9

Thread 1 Thread 2

How to Eliminate Idle Time? – Prefetching

10

Thread 1 Thread 2

How to Eliminate Idle Time? – Prefetching

11

Thread 1 Thread 2

How to Eliminate Idle Time? – Prefetching

12

Thread 1 Thread 2

•  Unpredictable workload
•  Data dependence and limited

parallelism

How to Eliminate Idle Time? – Speculation

13

Thread 1 Thread 2

How to Eliminate Idle Time? – Speculation

14

Thread 1 Thread 2

How to Eliminate Idle Time? – Speculation

15

Thread 1 Thread 2 Arbitration Request

How to Eliminate Idle Time? – Speculation

16

Thread 1 Thread 2 Speculation Fail

Work Sharing Algorithm

17

Manager

Thread 0 Thread 1 Thread 2 Thread 3

Work Request Work Request Work Request

Work Sharing Algorithm

18

Manager

Thread 0 Thread 1 Thread 2 Thread 3

Work Request Work Request Work Request

Work Sharing Algorithm

19

Manager

Thread 0 Thread 1 Thread 2 Thread 3

Speculative Work Sharing Algorithm

20

Manager

Thread 0 Thread 1 Thread 2 Thread 3

Work Request Work Request Work Request

Speculative Work Sharing Algorithm

21

Manager Thread Some Worker Thread

Speculative Work Sharing Algorithm

22

Manager Thread Some Worker Thread

Speculative Work Sharing Algorithm

23

Manager Thread Some Worker Thread

Arbitration Request for A

A

Speculative Work Sharing Algorithm

24

Manager Thread Some Worker Thread

Arbitration Request for B

A

B

Speculative Work Sharing Algorithm

25

Manager Thread Some Worker Thread

Arbitration Request for E

A

B

C

D

E

Speculative Work Sharing Algorithm

26

Manager Thread Some Worker Thread

A

B

C

D

E

Response for A: Success

Commit

Speculative Work Sharing Algorithm

27

Manager Thread Some Worker Thread

B

C

D

E

Response for B: Success

Commit

Speculative Work Sharing Algorithm

28

Manager Thread Some Worker Thread

C

D

E

Response for C: Fail

Roll Back

Roll Back

Roll Back

Delete

Speculative Work Sharing Algorithm

29

Manager Thread Some Worker Thread

Work Request

• Counting nodes in randomly generated
tree

•  Tree generation is based on separable
cryptographic random number generator
 childCount = f(nodeId)!
 childId = SHA1(nodeId, childIndex)!

• Different types of trees
•  Binomial (probability q, # of child m)
•  Geometric (depth limit d, branching factor is

geometric distribution with mean b)

Unbalanced Tree Search (UTS)

30

Work Sharing in UTS
• A node in tree is a unit of work
• A chunk is a set of nodes, and minimum transferrable unit
• Release interval is the frequency with which a worker

releases a chunk to the manager

If (HasSurplusWork() and !
 NodesProcessed % release_inerval == 0)!
{!

!ReleaseWork()!
}!

31

Experimental Setup and Inputs
•  Illinois Campus Cluster

•  Cluster of HP ProLiant Servers
•  2 Intel X5650 2.66Ghz 6Core Processors per Node
•  High Speed Infiniband Cluster Interconnect

32

Binomial
(109 Nodes)

Geometry
(109 Nodes)

Small 0.111 0.102
Medium 2.79 1.64
Large 10.6 4.23

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 10 100

Ex
ec

. T
im

e
(s

)

Chunk Size

Impact of release interval on execution time (Geometric Tree)

4

Tuning of Original Algorithm – Small Input
(on 4 nodes, 12 cores each)

33

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 10 100

Ex
ec

. T
im

e
(s

)

Chunk Size

Impact of release interval on execution time (Geometric Tree)

4
8

Tuning of Original Algorithm – Small Input
(on 4 nodes, 12 cores each)

34

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 10 100

Ex
ec

. T
im

e
(s

)

Chunk Size

Impact of release interval on execution time (Geometric Tree)

4
8

16

Tuning of Original Algorithm – Small Input
(on 4 nodes, 12 cores each)

35

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 10 100

Ex
ec

. T
im

e
(s

)

Chunk Size

Impact of release interval on execution time (Geometric Tree)

4
8

16
32

Tuning of Original Algorithm – Small Input
(on 4 nodes, 12 cores each)

36

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 10 100

Ex
ec

. T
im

e
(s

)

Chunk Size

Impact of release interval on execution time (Geometric Tree)

4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384
32768
65536

Tuning of Original Algorithm – Small Input
(on 4 nodes, 12 cores each)

37

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 10 100

Ex
ec

. T
im

e
(s

)

Chunk Size

Impact of release interval on execution time (Geometric Tree)

4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384
32768
65536

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 10 100

Ex
ec

. T
im

e
(s

)

Chunk Size

Impact of release interval on execution time (Geometric Tree)

4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384
32768
65536

Original vs. Speculative Algorithm – Small Input
(on 4 nodes, 12 cores each)

38

Original Speculative

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 10 100

Ex
ec

. T
im

e
(s

)

Chunk Size

Impact of release interval on execution time (Geometric Tree)

16
32
64

128
256
512

1024
2048
4096

Tuning of Original Algorithm – Medium Input
(on 4 nodes, 12 cores each)

39

•  Optimal values: (128, 12)
•  Some results for large input on 8

nodes

Time (s)
(128, 8)

Time (s)
(128, 12)

Original 50.385 26.681

Speculative 18.902 18.886

Scalability Study – Geometric Tree

40

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10 100 1000

Ex
ec

. T
im

e
(s

)

of MPI Ranks

Original
Speculative

 0

 10

 20

 30

 40

 50

 60

 70

 10 100 1000

Ex
ec

. T
im

e
(s

)

of MPI Ranks

Original
Speculative

Scalability Study – Binomial Tree

41

Conclusion
• Speculation

•  Is a light-weight technique in load-balancing algorithms
•  Is a potential solution to eliminate idle time
•  Reduces sensitivity of a load-balancing algorithm to parameters
•  Helps to reduce tuning efforts
•  Exhibits a higher scalability

42

BACK UP SLIDES

44

Design Guidelines
•  The time it takes to process a speculative task is far less

than the time it takes to get response of an arbitration
•  A worker may need multiple speculative tasks at a time

•  Low overhead algorithm to get speculative task
•  Minimal speculative task transfer (i.e. minimizing speculative task

destroy)

• Quality of an speculative task decreases over time
•  Move actual task a worker has, less speculative task it should carry

• Quality of an speculative task increases as it goes deeper
in its owner’s actual queue

45

Does Speculation Help Work Stealing?
• Base-line algorithm + speculative algorithm guidelines =

speculative work stealing (Algorithm A)
• Speculative work stealing + replacing speculative

messages with prefetching = optimized prefetch-based
work stealing (Algorithm B)

•  “A” has a slight performance benefit over “B” (less than 5
percent overall)
•  Reason: Even the base-line does not have too much idle time in

UTS
• … But, speculative work stealing is helpful in problems

where there is a limited parallelism due to data
dependence
•  Example: Depth-first traversal of a graph

46

