Task mapping, job placements and routing strategies

Abhinav Bhatele Center for Applied Scientific Computing

LLNL: Peer-Timo Bremer, Todd Gamblin, Katherine E. Isaacs, Steven H. Langer, Kathryn Mohror, Martin Schulz

Illinois: Ronak Buch, Nikhil Jain, Harshitha Menon, Laxmikant V. Kale, Michael Robson

Utah: Amey Desai, Aaditya G. Landge, Valerio Pascucci

Purdue: Ahmed Abdel-Gawad, Mithuna Thottethodi

LBL: Brian Austin, Nicholas J.Wright

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Charm++ Workshop April 30, 2014

	Time (ns)	
Floating point operation	< 0.25	30-45
Time to access DRAM	50	128
Get data from another node	> 1000	128-576

P. Kogge et al., Exascale computing study: Technology challenges in achieving exascale systems, *Technical Report*, 2008.

• High costs for data movement in terms of time and energy

	Time (ns)	Energy spent (pJ)
Floating point operation	< 0.25	30-45
Time to access DRAM	50	128
Get data from another node	> 1000	128-576

P. Kogge et al., Exascale computing study: Technology challenges in achieving exascale systems, *Technical Report*, 2008.

- High costs for data movement in terms of time and energy
- Newer platforms stressing communication further (more cores, bigger networks)

	Time (ns)	Energy spent (pJ)
Floating point operation	< 0.25	30-45
Time to access DRAM	50	128
Get data from another node	> 1000	128-576

P. Kogge et al., Exascale computing study: Technology challenges in achieving exascale systems, *Technical Report*, 2008.

IBM		Cr	ay
Blue Gene/L	0.375	XT3	8.77
Blue Gene/P	0.375	XT4	1.36
Blue Gene/Q	0.117	XT5	0.23

Network bytes to flop ratios

A. Bhatele et al., Automated mapping of regular communication graphs on mesh interconnects, Intl. Conf. on High Performance Computing (HiPC), 2010.

- High costs for data movement in terms of time and energy
- Newer platforms stressing communication further (more cores, bigger networks)
- Imperative to minimize data movement and maximize locality

	Time (ns)	Energy spent (pJ)
Floating point operation	< 0.25	30-45
Time to access DRAM	50	128
Get data from another node	> 1000	128-576

P. Kogge et al., Exascale computing study: Technology challenges in achieving exascale systems, *Technical Report*, 2008.

IBM		Cr	ay
Blue Gene/L	0.375	XT3	8.77
Blue Gene/P	0.375	XT4	1.36
Blue Gene/Q	0.117	XT5	0.23

Network bytes to flop ratios

A. Bhatele et al., Automated mapping of regular communication graphs on mesh interconnects, *Intl. Conf. on High Performance Computing (HiPC)*, 2010.

TASK MAPPING

- What is mapping layout/placement of tasks/processes in an application on the physical interconnect
- Does not require any changes to the application

- What is mapping layout/placement of tasks/processes in an application on the physical interconnect
- Does not require any changes to the application

- What is mapping layout/placement of tasks/processes in an application on the physical interconnect
- Does not require any changes to the application

- What is mapping layout/placement of tasks/processes in an application on the physical interconnect
- Does not require any changes to the application

- What is mapping layout/placement of tasks/processes in an application on the physical interconnect
- Does not require any changes to the application

- Goals:
 - Balance computational load
 - Minimize contention (optimize latency or bandwidth)

- Traditionally, research has focused on bringing tasks closer to reduce the number of hops
 - Minimizes latency, but more importantly link contention
- For applications that send large messages this might not be optimal

- Traditionally, research has focused on bringing tasks closer to reduce the number of hops
 - Minimizes latency, but more importantly link contention
- For applications that send large messages this might not be optimal

- Traditionally, research has focused on bringing tasks closer to reduce the number of hops
 - Minimizes latency, but more importantly link contention
- For applications that send large messages this might not be optimal

- Traditionally, research has focused on bringing tasks closer to reduce the number of hops
 - Minimizes latency, but more importantly link contention
- For applications that send large messages this might not be optimal

Rubik

- We have developed a mapping tool focusing on:
 - structured applications that are bandwidth-bound, use collectives over sub-communicators
 - built-in operations that can increase effective bandwidth on torus networks based on heuristics
- Input:
 - Application topology with subsets identified
 - Processor topology
 - Set of operations to perform
- Output: map file for job launcher

Application example

app = box([9,3,8]) # Create app partition tree of 27-task planes
app.tile([9,3,1])

network = box([6,6,6]) # Create network partition tree of 27-processor cubes
network.tile([3,3,3])

network.map(app) # Map task planes into cubes

Abhinav Bhatele @ Charm++ Workshop

Mapping pF3D

- A laser-plasma interaction code used at the National Ignition Facility (NIF) at LLNL
- Three communication phases over a 3D virtual topology:
 - Wave propagation and coupling: 2D FFTs within XY planes
 - Light advection: Send-recv between consecutive XY planes
 - Hydrodynamic equations: 3D near-neighbor exchange

Mapping pF3D

- A laser-plasma interaction code used at the National Ignition Facility (NIF) at LLNL
- Three communication phases over a 3D virtual topology:
 - Wave propagation and coupling: 2D FFTs within XY planes
 - Light advection: Send-recv between consecutive XY planes
 - Hydrodynamic equations: 3D near-neighbor exchange

Mapping pF3D

- A laser-plasma interaction code used at the National Ignition Facility (NIF) at LLNL
- Three communication phases over a 3D virtual topology:
 - Wave propagation and coupling: 2D FFTs within XY planes
 - Light advection: Send-recv between consecutive XY planes
 - Hydrodynamic equations: 3D near-neighbor exchange

<image/>	

	2048 cores		16384	cores
MPI call	Total %	MPI %	Total %	MPI %
Send	4.90	28.45	23.10	57.21
Alltoall	8.10	46.94	7.30	18.07
Barrier	2.78	16.10	8.13	20.15

Performance benefits

A. Bhatele et al. Mapping applications with collectives over sub-communicators on torus networks. In Proceedings of the ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC '12. IEEE Computer Society, November 2012.

Performance benefits

A. Bhatele et al. Mapping applications with collectives over sub-communicators on torus networks. In Proceedings of the ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC '12. IEEE Computer Society, November 2012.

Visualizing network traffic using **Boxfish**

MODELING & SIMULATION

Predicting execution time without executing the code

- Goal: find which mapping gives the best performance
- Offline metrics: maximum hops, average bytes, maximum bytes
- Use network hardware counters to propose new metrics
- Supervised learning algorithms to predict performance

N. Jain et al. Predicting application performance using supervised learning on communication features. In Proceedings of the ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC '13. IEEE Computer Society, November 2013.

 Wasted allocation hours

	2012	2013
Intrepid	4.16M	0.73M
Mira	0.17M	7.67M
Total	4.33M	8.40M

• Wasted allocation hours

	2012	2013
Intrepid	4.16M	0.73M
Mira	0.17M	7.67M
Total	4.33M	8.40M

13 million core hours!

- Wasted allocation hours
- Wasted time in the queue

	2012	2013
Intrepid	4.16M	0.73M
Mira	0.17M	7.67M
Total	4.33M	8.40M

13 million core hours!

- Wasted allocation hours
- Wasted time in the queue
- All we need is which is the best mapping?

	2012	2013
Intrepid	4.16M	0.73M
Mira	0.17M	7.67M
Total	4.33M	8.40M

13 million core hours!

Supervised learning: scikit-learn

- Use simulation and other tools to obtain network counters and other contention parameters
- Exploit supervised learning algorithms for performance prediction
 - forests of randomized decision trees

LLNL-PRES-654602

ΟΜΡυτλτίοΝ

Decision surfaces of a random forest

Existing and new metrics

岔

Maximum Dilation

 \triangle \triangle

Δ

10

- Existing metrics
 - maximum hops
 - average bytes
 - maximum bytes
- New metrics:
 - Buffer length (on intermediate node)
 - FIFO length (packets in injection FIFOs)
 - Delay per link (packets in buffers / #received packets)

Fime per iteration (ms)

60

50

40

30

20

0

Message life cycle on Blue Gene/Q

Results

- Three communication kernels
 - Five-point 2D Stencil
 - 14-point 3D Stencil
 - All-to-all over subcommunicators

Results

- Three communication kernels
 - Five-point 2D Stencil
 - 14-point 3D Stencil
 - All-to-all over sub-communicators

Absolute performance correlation

Results

- Three communication kernels
 - Five-point 2D Stencil
 - 14-point 3D Stencil
 - All-to-all over subcommunicators

Absolute performance correlation

Abhinav Bhatele @ Charm++ Workshop

Blue Gene/Q (16,384 cores)

 Better correlation than with existing metrics such as average or maximum bytes

- Better correlation than with existing metrics such as average or maximum bytes
- Hybrid metric:
 - average bytes + maximum bytes + average buffer length + maximum FIFO length

- Better correlation than with existing metrics such as average or maximum bytes
- Hybrid metric:
 - average bytes + maximum bytes + average buffer length + maximum FIFO length
- Crazy things:
 - combine all training sets
 - use 16k training set to predict 64k performance

Predicting the performance of pF3D

Production application

- has computation
- and multiple phases of communication
- Hybrid metric:
 - average bytes + average buffer length + average delay + sum of hops + maximum FIFO length

Blue Gene/Q (16,384 cores)

JOB PLACEMENT & ROUTING

Performance variability

Average messaging rates for batch jobs running a laser-plasma interaction code

Abhinav Bhatele @ Charm++ Workshop

Performance variability

Average messaging rates for batch jobs running a laser-plasma interaction code

Total number of bytes sent on the network

Time spent sending the messages

Leads to several problems ...

- Individual jobs run slower:
 - More time to complete science simulations
 - Increased wait time in job queues
 - Inefficient use of machine time allocation/core-hours
- Overall lower throughput
- Increase energy usage/costs

Also affects software development

- Debugging performance issues
- Quantifying the effect of various software changes on performance
 - code changes
 - compiler/software stack changes
- Requesting time for a batch job
- Writing allocation proposals

pF3D characterization

Time spent in communication and computation in pF3D

pF3D characterization

Time spent in MPI calls on 512 nodes

Sources of variability

• Operating system noise (OS jitter)

- OS daemons running on some cores of each node
- Placement/location of the allocated nodes for the job (Allocation shape)
- Contention for shared resources (Inter-job contention)
 - Sharing network links with other jobs

April I 16

April II

April 16

https://scalability.llnl.gov/performance-analysis-through-visualization/software.php

April I I 6

April I I MILC job in green

April 16 25% higher messaging rate

https://scalability.llnl.gov/performance-analysis-through-visualization/software.php

April I 16

April II

April 16b

April I 16

April I I MILC job in green

April 16b

27.8% higher messaging rate, LSMS is not communication-heavy

March 15 April 04

March 15

April 04

March 15 April 04

March 15

Three conflicting jobs, two MILC

April 04

2.29X higher messaging rate

Effect of MILC on pF3D

Effect of MILC on pF3D

Effect of MILC on pF3D

Performance tip!

- Variability insignificant on IBM Blue Gene systems
- OS noise and allocation shape have a weak correlation with performance

 The placement of other jobs around a job can affect its performance significantly

http://www.hpcwire.com/2013/11/16/sc13-research-highlight-goes-performance-neighborhood/

Modeling job placements and message routing

- Dragonfly topology: a two-level hierarchical topology
- Routing choices: static (deterministic) vs. dynamic (adaptive), direct vs. indirect (random jumps)
- Placement options: random, round-robin, blocked

ΙΟΜΡυτλτίοΝ

Single jobs

Job placements grouped based on Routing

Parallel job workload

- Representative of NERSC workloads
- Static routing out of the question
- Routings with indirect jumps preferred

LLNL-PRES-654602

COMPUTΛTION

Summary

- Optimizing communication is the #1 priority
 - Minimize off-node communication
 - Map remaining off-node communication carefully
- Job placements and mapping are non-intrusive methods for improving performance
- Going forward: modeling and simulation will be crucial for:
 - designing future networks
 - predicting application performance

http://computation-rnd.llnl.gov/extreme-computing/ interconnection-networks.php

This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 13-ERD-055: STATE - **S**calable **T**opology **A**ware **T**ask **E**mbedding.

Charm++ Workshop ♦ April 30, 2014

LLNL: Abhinav Bhatele, Peer-Timo Bremer, Todd Gamblin, Katherine E. Isaacs, Steven H. Langer, Kathryn Mohror, Martin Schulz

Illinois: Ronak Buch, Nikhil Jain, Harshitha Menon, Laxmikant V. Kale, Michael Robson

Utah: Amey Desai, Aaditya G. Landge, Valerio Pascucci

Purdue: Ahmed Abdel-Gawad, Mithuna Thottethodi

LBL: Brian Austin, Nicholas J.Wright

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.