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Communication: the bottleneck at 
extreme scale
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Time (ns)
Energy 

spent (pJ)

Floating point operation < 0.25 30-45

Time to access DRAM 50 128

Get data from another node > 1000 128-576

P. Kogge et al., Exascale computing study: Technology challenges in achieving 
exascale systems, Technical Report, 2008.
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• Newer platforms stressing 
communication further (more 
cores, bigger networks)
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Time (ns)
Energy 

spent (pJ)

Floating point operation < 0.25 30-45

Time to access DRAM 50 128

Get data from another node > 1000 128-576

IBMIBM CrayCray

Blue Gene/L 0.375 XT3 8.77

Blue Gene/P 0.375 XT4 1.36

Blue Gene/Q 0.117 XT5 0.23

A. Bhatele et al., Automated mapping of regular communication graphs on 
mesh interconnects, Intl. Conf. on High Performance Computing (HiPC), 2010.

Network bytes to flop ratios

P. Kogge et al., Exascale computing study: Technology challenges in achieving 
exascale systems, Technical Report, 2008.
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extreme scale

• High costs for data movement in 
terms of time and energy

• Newer platforms stressing 
communication further (more 
cores, bigger networks)

• Imperative to minimize data 
movement and maximize locality
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• Goals:

• Balance computational load

• Minimize contention (optimize latency or bandwidth)
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Maximize bandwidth?

• Traditionally, research has focused on bringing tasks 
closer to reduce the number of hops

• Minimizes latency, but more importantly link contention

• For applications that send large messages this might 
not be optimal
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Rubik

• We have developed a mapping tool focusing on:

• structured applications that are bandwidth-bound, use collectives 
over sub-communicators

• built-in operations that can increase effective bandwidth on torus 
networks based on heuristics

• Input:

• Application topology with subsets identified

• Processor topology

• Set of operations to perform

• Output: map file for job launcher

6
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Application example
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app = box([9,3,8]) # Create app partition tree of 27-task planes
app.tile([9,3,1])

network = box([6,6,6]) # Create network partition tree of 27-processor cubes
network.tile([3,3,3])

network.map(app)  # Map task planes into cubes

1 # Create app partition tree of 27-task planes
2 app = box([9,3,8])
3 app.tile([9,3,1])
4

5 # Create network partition tree of 27-processor
cubes

6 network = box([6,6,6])
7 network.tile([3,3,3])
8

9 network.map(app) # Map task planes into cubes

map()

=

app network

network with mapped
application ranks

216 216

27 27 27 27 27 27 27 2727 27 27 27 27 27 27 27

Fig. 6: Mapping a partition tree from the application to network domain using Rubik

(a) tilt(Z,*,*) (b) tilt(Z,X,*) (c) tilt(Z,Y,*) (d) zigzag(Z,X,*) (e) zigzag(Z,X,*)

Fig. 7: tilt and zigzag operations for the Z plane of a three-dimensional box (a). The first operand of both operations selects the planes to modify; the
second selects the directions along which increasing (tilt) or alternating (zigzag) shifts are applied.

the plane’s tasks to a higher dimensional space allows more
bandwidth to be exploited. Rubik makes this easy by facilitat-
ing mapping for arbitrary number of dimensions.

Fig. 6 shows two boxes of 216 objects subdivided into
eight 27-object groups. The first box’s children are planes,
and the second box’s children are cubes. Regardless of the
particular structure, the number of leaves in the two partition
trees is the same and each is of the same size. Such trees are
considered compatible. Two compatible trees can be mapped
by performing a simple breadth-first traversal of their leaves
and pairing off successive child boxes. The arrows in the figure
show these pairings for the example. For each pair, we take
the tasks in the child boxes in the application domain and copy
them into the corresponding boxes in the network domain.

The Rubik map operation reduces the burden of mapping
multi-dimensional spaces by allowing the user to think only
in terms of group sizes. The particular shapes of groups are
specified separately using the simple partitioning operations
discussed above. All that is required for a map is tree
compatibility. Indeed, despite their drastically different shapes,
map can be applied to any two partition trees shown in Fig. 5,
because their leaves are all the same size. They could also
be mapped to the tree in Fig. 4c, even though it has more
levels. These partitions could even be mapped to four- or five-
dimensional boxes, as long as their leaves are compatible.

D. Permuting operations

By default, the Rubik map operation copies ranks between
Cartesian spaces in scan-line order, with the highest-indexed
dimension varying fastest. While this is an intuitive default
order, a user may want to permute ranks within groups to
target bandwidth or latency optimizations. Rubik has several

operations that allow tasks to be permuted to exploit properties
of the physical network: tilt, zigzag, and zorder.

Tilt. The tilt operation can increase the number of links
available for messaging on nD Cartesian networks. Fig. 7b
and 7c show illustrations of two tilts applied to a 3D box.
Conceptually, tilt(op1,op2,op3) selects one hyperplane
(denoted by op1) and a direction (op2) along which an
increasing number (op3) of shifts are applied normal to the
direction of the hyperplane. Shifts are applied in a circular
fashion to all parallel hyperplanes resulting in a permutation
that “tilts” each hyperplane. Fig. 8 shows multiple, successive
applications of the tilt operation to a 4�4�4 box. On the left
is an untilted box, with tasks colored by identity (MPI rank)
from lightest to darkest. In the center, we see the same tasks
after permutation by one tilt, and on the right is the same box
after two tilts have been applied.

1 Z, Y, X = 0, 1, 2 # Assign names to dimensions
2 net = box([4,4,4]) # Create a box
3 net.tilt(Z, X, 1) # Tilt Z (XY) planes along X
4 net.tilt(X, Y, 1) # Tilt X (YZ) planes along Y

Fig. 8: Untilted, once-tilted, and twice-tilted 3D boxes

tilt uses the insights described in Section II to increase
the available links for communication between neighbor tasks



LLNL-PRES-654602

Abhinav Bhatele @ Charm++ Workshop

Mapping pF3D
• A laser-plasma interaction code used at the 

National Ignition Facility (NIF) at LLNL

• Three communication phases over a 3D virtual 
topology:

• Wave propagation and coupling: 2D FFTs within XY planes

• Light advection: Send-recv between consecutive XY planes

• Hydrodynamic equations: 3D near-neighbor exchange

8
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into nx columns and ny rows resulting in nx � ny � nz sub-
domains. Within each plane, rows and columns are arranged
into sub-communicators for the all-to-all’s discussed above.
For the test problem used in this paper, pF3D uses nx =
16, ny = 8 and nz is calculated according to the number of
processors available. In particular, for weak scaling the mesh
is refined along the Z-direction, adding more XY planes and
thus using more processors.

Table I lists the percentage of time spent in the top three
MPI routines in pF3D when running on 2,048 and 16,384
cores of BG/P. A significant amount of the time is spent in
MPI Send (communication between adjacent XY planes) and
in MPI Alltoall over X and Y sub-communicators. The point-
to-point messages are 320 and 480 KB in size whereas the
all-to-all messages are 20 KB in size. Therefore, if we can
map the XY planes such that we optimize the point-to-point
sends between the planes while simultaneously improving the
collective communication for the X and Y FFTs, we can
expect performance improvements.

2048 cores 16384 cores
MPI call Total % MPI % Total % MPI %

Send 4.90 28.45 23.10 57.21
Alltoall 8.10 46.94 7.30 18.07
Barrier 2.78 16.10 8.13 20.15

TABLE I: Breakdown of the time spent in different MPI calls for pF3D
running on 2,048 and 16,384 cores of Blue Gene/P (for the TXYZ mapping)

B. Baseline performance

To establish a baseline performance, we ran pF3D with the
default mapping on BG/P. The default mapping, referred to as
TXYZ, takes the MPI processes in rank order and assigns them
to cores within a node first (the T dimension), then moving
along the X direction of the torus, then Y , and finally the Z
direction. The times spent in computation and communication
are shown as a stacked bar chart in Fig. 10.

Fig. 10: Weak scaling performance of pF3D on Blue Gene/P for the default
TXYZ mapping

The trend suggests that as more processors are used, com-
munication takes up an increasing fraction of the total runtime,

culminating in 35% for 65,536 cores. For applications with
near-neighbor communication, the TXYZ mapping typically
represents a decent default as processes that are close in MPI
rank space are generally placed close on the torus network.
Further, since both the application domain as well as the
mapping are XYZ-ordered, while not optimal, it is a scalable
mapping. However, considering the results of Section II and
the large message sizes of pF3D’s point-to-point communica-
tions, a slightly higher latency in exchange for more effective
bandwidth may be beneficial. In the next section, we explore
mappings that aim at further improving the performance.

C. Mapping on 2,048 cores
Based on the understanding of the communication structure

of pF3D, one can use Rubik to generate mappings aimed at
optimizing both its point-to-point and collective communica-
tion. Here, we use mappings for 2048 cores (512 nodes) as
an example to explain the process of using Rubik as well as
to explore why certain mappings perform better than others.
At 2048 cores, the BG/P partition is a 8 � 8 � 8 torus with
four cores per node and the pF3D process grid is 16�8�16.
Following the discussion above, the goal is to place all MPI
processes within a pF3D plane close on the network. The
corresponding Rubik code (below) first tiles the application
domain (line 2) into 16�8 planes and the torus into 8�8�2
slabs (line 5) as shown below. In the rest of the paper, we
refer to this basic mapping as tiled. Subsequently, we tilt the
planes along the X (line 8) and Y (line 9) directions. These
mappings are referred to as tiltX and tiltXY respectively.

1 app = box([16, 8, 16])
2 app.tile([16, 8, 1])
3

4 torus = box([8, 8, 8, 4])
5 torus.tile([8, 8, 2, 1])
6

7 torus.map(app)
8 torus.tilt(Z, X, 1) # tilt XY planes along X
9 torus.tilt(Z, Y, 1) # tilt XY planes along Y

10

11 torus.write_map_file(f)

Fig. 11 shows the reduction in the time spent in the top
four MPI routines using each of the optimized mappings –
XYZT, tile, tiltX and tiltXY. The XYZT mapping reduces
the time spent in MPI Sends significantly because compared
to the TXYZ mapping, there is less contention for links
during message exchanges between pF3D planes. In the TXYZ
mapping, four cores on each node and also nodes with the
same X coordinate contend for Y direction links. This is
avoided in the XYZT mapping by spreading each pF3D plane
to two torus planes and hence using more links (in Z) for the
inter-plane communication. In the tiled mapping, four adjacent
pF3D planes are placed on the four cores of each node of two
adjacent XY -planes of the torus network. As shown in Fig. 11,
this provides a good and scalable mapping which outperforms
the XYZT mapping also. Inter-plane communication is now
confined within a node to the extent possible.
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A. Bhatele et al. Mapping applications with collectives over sub-communicators on torus networks. In Proceedings of the ACM/IEEE 
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Visualizing network traffic using 
Boxfish
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Fig. 12: Two-dimensional projections of the 3D torus network. Each column displays the network traffic along the three directions, X , Y and Z for five
mappings of pF3D on 512 nodes: TXYZ, XYZT, tile, tiltX, tiltXY

Fig. 11: Time spent in different MPI calls for five different mappings of a
16� 8� 16 pF3D grid to 512 nodes (2,048 cores) of Blue Gene/P

In the XYZT and tiled mappings, each all-to-all within the
pF3D planes uses only X or Y direction links and some Z
links on the network. To increase the number of potential
routes for the all-to-all sub-communicators, we therefore apply
either one tilt in X (referred to as tiltX) or a tilt in both X
and Y (referred to as tiltXY). Both mappings make links in the
Z direction of the torus available to the all-to-alls. The twice-
tilted tiltXY mapping reduces the time spent in both send-
receives and all-to-alls (by optimizing the intra- and inter-plane
communication). At 2048 cores, the communication is only
10% of the total execution time, hence the overall performance
improvements are not as significant. The iteration time for
the five mappings are 467.76, 429.22, 422.38, 420.580 and
417.095 seconds respectively.

To better understand the impact of mapping and routing on
the performance, we collected network counter data for all
links of the torus for the five mappings described above (see
Fig. 12). We use a novel projection of the 3D network topology

provided by Boxfish, an integrated performance analysis and
visualization tool we have developed [13]. Each image of
Fig. 12 shows all network links along two torus dimensions
aggregated into bundles along the third dimension.

It is easy to see that the first three mappings lead to under-
utilization of the Z links while the X and Y links are heavily
used. Another noticeable pattern is that the first three mappings
lead to uneven distribution of traffic on links in a particular
direction. This is less noticeable for the tiltX mapping even
though there does exist some unevenness in the Z direction.
The tiltXY mapping is able to homogenize the traffic for any
given direction. Even though this mapping seems to now over-
utilize Z links (compared to tiltX) it improves performance.

D. Mapping on 8,192 cores

Rubik facilitates the process of generating mappings for
structured communication patterns. Each mapping can be
generated using a few lines of Python code and they can
be scaled up easily to larger number of processors or higher
dimensions. In the process of writing this paper, we generated
more than two hundred mappings for pF3D using Rubik and
tested all of them on BG/P. Such an extensive exploration
would have been infeasible with mappings created by hand.
Generating efficient mappings by hand can be a significant
effort in terms of the time spent in designing the strategy,
writing a program that creates the mapping and debugging and
verifying that the logic is correct. Also, extending a mapping
for a 3D torus to a 5D torus can be non-trivial. Typically,
application developers will stop after finding the first custom
mapping that is ”good enough” because it is difficult and time-
consuming to generate mappings.

In Fig. 13, we present the results of twenty-five different
mappings that were used on 8,192 cores. The pF3D mesh

TXYZ XYZT tile tiltX tiltXY
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MODELING & SIMULATION
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Predicting execution time without 
executing the code

• Goal: find which mapping gives the best performance

• Offline metrics: maximum hops, average bytes, 
maximum bytes

• Use network hardware counters to propose new 
metrics

• Supervised learning algorithms to predict 
performance

12

N. Jain et al. Predicting application performance using supervised learning on communication features. In Proceedings of the ACM/IEEE 
International Conference for High Performance Computing, Networking, Storage and Analysis, SC '13. IEEE Computer Society, November 2013.
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Why don’t we run all the mappings?

• Wasted allocation 
hours

• Wasted time in the 
queue

• All we need is - 
which is the best 
mapping?
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Supervised learning: scikit-learn

• Use simulation and other tools to 
obtain network counters and 
other contention parameters

• Exploit supervised learning 
algorithms for performance 
prediction

• forests of randomized decision trees

14
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Existing and new metrics

• Existing metrics

• maximum hops

• average bytes

• maximum bytes

• New metrics:

• Buffer length (on intermediate node)

• FIFO length (packets in injection FIFOs)

• Delay per link (packets in buffers / #received packets)
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Figure 1: Performance variation with prior metrics for five-point halo exchange on 16,384 cores of Blue
Gene/Q. Points represent observed performance with various task mappings. A large variation in performance
is observed for the same value of the metric in all three cases.

metric. In contrast, maximum bytes on a link is an experi-
mentally obtained metric. In addition to these new metrics,
we also use derived metrics that use information only from
some outliers (nodes or links).

We present performance predictions using the random-
ized forests ensemble method for three di↵erent communi-
cation kernels: a two-dimensional five-point halo exchange,
a three-dimensional 15-point halo exchange, and an all-to-
all benchmark over sub-communicators. We show almost
perfect correlation for runs on 16,384 and 65,536 cores of
Blue Gene/Q. We also show predictions for a production
application, pF3D, and for combining samples from di↵er-
ent benchmarks into a single training set and testing set.

In Section 2, we describe the common metrics used in
literature and motivate the need for more precise metrics.
Sources of contention on torus networks, methodology for
collecting hardware counters data, and the proposed met-
rics are discussed in Section 3. The benchmarks and super-
vised learning techniques used in the paper and the mea-
sures of prediction success are described in Section 4. In
Sections 5, 6, 7, we present results using prior metrics, new
metrics and their combinations. We conclude our work in
Section 8.

2. BACKGROUND AND MOTIVATION
Several metrics have been proposed in the literature to

evaluate task mappings o✏ine. Let us assume a guest graph,
G = (Vg, Eg) (communication graph between tasks) and a
host graph, H = (Vh, Eh) (network topology of the parallel
machine). M defines a mapping of the guest graph on the
host graph (G on H). The earliest metric that was used
to compare the e↵ectiveness of task mappings is dilation [3,
12]. Dilation for a mapping M can be defined as,

dilation(M) = max
ei2Eg

di(M) (1)

where di is the dilation of the edge ei for a mapping M .
Dilation of an edge ei is the number of hops between the
end-points of the edge when mapped to the host graph. This
metric aims at minimizing the length of the longest wire in
a circuit [3]. We will refer to this as maximum dilation
to avoid any confusion. We can also calculate the average
dilation per edge for a mapping as,

average dilation-per-edge(M) =

P
ei2Eg

di(M)

|Eg|
(2)

Hoefler and Snir overload dilation to describe the “ex-
pected” dilation for an edge and “average” dilation for a
mapping [11]. Their definition of expected dilation for an
edge can be reduced to equation 1 above by assuming that
messages are only routed on shortest paths, which is true for
the IBM Blue Gene and Cray XT/XE family (if all nodes are
in a healthy state). The average dilation metric, as coined
by Hoefler and Snir, is a weighted dilation and has been pre-
viously referred to as the hop-bytes metric by Sadayappan [9]
in 1988 and Agarwal in 2006 [2]. Hop-bytes is the weighted
sum of the edge dilations where the weights are the message
sizes. Hop-bytes can be calculated by the equation,

hop-bytes(M) =
X

ei2Eg

di(M)⇥ wi (3)

where di is the dilation of edge ei and wi is the weight (mes-
sage size in bytes) of edge ei.
Hop-bytes gives an indication of the overall communica-

tion tra�c being injected on to the network. We can derive
two metrics based on hop-bytes: the average number of hops
traveled by each byte on the network,

average hops-per-byte(M) =

P
ei2Eg

di(M)⇥ wi
P

ei2Eg
wi

(4)

and the average number of bytes that pass through a hard-
ware link,

average bytes-per-link(M) =

P
ei2Eg

di(M)⇥ wi

|Eh|
(5)

The former gives an indication of how far each byte has to
travel on average. The latter gives an indication of the av-
erage load or congestion on a hardware link on the network.
They are derived metrics (from hop-bytes) and all three are
practically equivalent when used for prediction. In the rest
of the paper, we use average bytes-per-link.
Another metric that indicates congestion on network links

is the maximum number of bytes that pass through any link
on the network,

maximum bytes(M) = max
li2Eh

(
X

ej2Eg |ej=)li

wj) (6)

where ej =) li represents that edge ej in the guest graph
goes through edge (link) li in the host graph (network). Hoe-
fler and Snir use a second metric in their paper [11], worst
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Figure 1: Performance variation with prior metrics for five-point halo exchange on 16,384 cores of Blue
Gene/Q. Points represent observed performance with various task mappings. A large variation in performance
is observed for the same value of the metric in all three cases.

metric. In contrast, maximum bytes on a link is an experi-
mentally obtained metric. In addition to these new metrics,
we also use derived metrics that use information only from
some outliers (nodes or links).

We present performance predictions using the random-
ized forests ensemble method for three di↵erent communi-
cation kernels: a two-dimensional five-point halo exchange,
a three-dimensional 15-point halo exchange, and an all-to-
all benchmark over sub-communicators. We show almost
perfect correlation for runs on 16,384 and 65,536 cores of
Blue Gene/Q. We also show predictions for a production
application, pF3D, and for combining samples from di↵er-
ent benchmarks into a single training set and testing set.

In Section 2, we describe the common metrics used in
literature and motivate the need for more precise metrics.
Sources of contention on torus networks, methodology for
collecting hardware counters data, and the proposed met-
rics are discussed in Section 3. The benchmarks and super-
vised learning techniques used in the paper and the mea-
sures of prediction success are described in Section 4. In
Sections 5, 6, 7, we present results using prior metrics, new
metrics and their combinations. We conclude our work in
Section 8.

2. BACKGROUND AND MOTIVATION
Several metrics have been proposed in the literature to

evaluate task mappings o✏ine. Let us assume a guest graph,
G = (Vg, Eg) (communication graph between tasks) and a
host graph, H = (Vh, Eh) (network topology of the parallel
machine). M defines a mapping of the guest graph on the
host graph (G on H). The earliest metric that was used
to compare the e↵ectiveness of task mappings is dilation [3,
12]. Dilation for a mapping M can be defined as,

dilation(M) = max
ei2Eg

di(M) (1)

where di is the dilation of the edge ei for a mapping M .
Dilation of an edge ei is the number of hops between the
end-points of the edge when mapped to the host graph. This
metric aims at minimizing the length of the longest wire in
a circuit [3]. We will refer to this as maximum dilation
to avoid any confusion. We can also calculate the average
dilation per edge for a mapping as,

average dilation-per-edge(M) =

P
ei2Eg

di(M)

|Eg|
(2)

Hoefler and Snir overload dilation to describe the “ex-
pected” dilation for an edge and “average” dilation for a
mapping [11]. Their definition of expected dilation for an
edge can be reduced to equation 1 above by assuming that
messages are only routed on shortest paths, which is true for
the IBM Blue Gene and Cray XT/XE family (if all nodes are
in a healthy state). The average dilation metric, as coined
by Hoefler and Snir, is a weighted dilation and has been pre-
viously referred to as the hop-bytes metric by Sadayappan [9]
in 1988 and Agarwal in 2006 [2]. Hop-bytes is the weighted
sum of the edge dilations where the weights are the message
sizes. Hop-bytes can be calculated by the equation,

hop-bytes(M) =
X

ei2Eg

di(M)⇥ wi (3)

where di is the dilation of edge ei and wi is the weight (mes-
sage size in bytes) of edge ei.
Hop-bytes gives an indication of the overall communica-

tion tra�c being injected on to the network. We can derive
two metrics based on hop-bytes: the average number of hops
traveled by each byte on the network,

average hops-per-byte(M) =

P
ei2Eg

di(M)⇥ wi
P

ei2Eg
wi

(4)

and the average number of bytes that pass through a hard-
ware link,

average bytes-per-link(M) =

P
ei2Eg

di(M)⇥ wi

|Eh|
(5)

The former gives an indication of how far each byte has to
travel on average. The latter gives an indication of the av-
erage load or congestion on a hardware link on the network.
They are derived metrics (from hop-bytes) and all three are
practically equivalent when used for prediction. In the rest
of the paper, we use average bytes-per-link.
Another metric that indicates congestion on network links

is the maximum number of bytes that pass through any link
on the network,

maximum bytes(M) = max
li2Eh

(
X

ej2Eg |ej=)li

wj) (6)

where ej =) li represents that edge ej in the guest graph
goes through edge (link) li in the host graph (network). Hoe-
fler and Snir use a second metric in their paper [11], worst
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(a) 2D Halo (b) 3D Halo (c) Sub A2A

Figure 4: Performance variations with different task mappings on 16,384 cores of BG/Q. As benchmarks become more communica-
tion intensive, even for small message sizes, mapping impacts performance.

Figure 5 (top) presents the rank correlation coefficient (RCC) val-
ues for predictions based on prior features (maximum dilation, av-
erage bytes per link and maximum bytes on a link). In most cases,
we find that the highest value for RCC is 0.91, i.e., the pairwise
ordering of 91% of mapping pairs was predicted correctly. For a
testing set of 28 samples, an RCC of 0.91 implies the incorrect
prediction of the pairwise ordering of 38 mapping pairs. A notable
exception is the 512 bytes case for 3D Halo where the RCC is 0.96.
In contrast, for 16 KB message sizes, the highest RCC is only 0.86.

In the case of 2D Halo and 3D Halo, the maximum bytes on a
link feature has the highest RCC while maximum dilation performs
very poorly with an RCC close to 0.60. However, for Sub A2A,
average bytes per link is a better predictor than maximum bytes on
a link for small to medium message sizes (by 4-5%). These results
substantiate the use of maximum bytes and average bytes as simple
and reasonably accurate metrics.

The metric for absolute performance correlation, R2, is also shown
in Figure 5. For all benchmarks and message sizes, maximum bytes
on a link performs the best with a score of up to 0.95 for 3D Halo
and Sub A2A. This indicates that scikit was able to find a fit us-
ing maximum bytes that had a strong correlation for observed and
predicted values.

5.3 New features
Section 3 explained the life cycle of a message on the Blue Gene/Q
torus network and the resources on the network such as links, buffers
and injection FIFOs that can affect the communication performance.
We have already shown strong correlation with performance for
one such factor, maximum bytes on any link, in Section 5.2. In this
section, we introduce two new kinds of derivations of the applica-
tion data that may be useful in improving the performance predic-
tion. Then, we present the prediction success for these new features
based on data derived from counters, generated by the analytical
program, and the new derivations of both.

We propose new metrics/features based on the buffer length, de-
lay and FIFO lengths (see Table 1) and derive others by extracting
counters and analytical data for outlier nodes and links:

0.6
0.7
0.8
0.9
1.0

16K 4M 512 16K 4M 8 512 16K 4M

R
2

Absolute performance correlation

max dilation
avg bytes

max bytes
Sub A2A3D Halo2D Halo

Figure 5: Prediction success based on prior features. The best
RCC score is 0.91 for most cases - 68 mispredictions out of 768.

Average Outliers (AO) We define a node or link as an average
outlier if an associated value for it is greater than the average
value of the entire data set. Selection of data points based on
the average value helps eliminate low values that can skew
derived features and hide information that may be useful.

Top Outliers (TO) Similar to the average outlier, we can define a
node or link to be a top outlier if an associated value for it is
within 5% of the maximum value across the entire data set.

We can use these two outlier selection criteria to define metrics that
represent the features extracted from outliers. We now focus on
prediction using the following features that had the highest RCC
among a large set of features that we explored: average buffer
length (avg buffer), average buffer length of TO (avg buffer TO),
sum of maximum dilation for AO (sum dilation AO), average bytes
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tion intensive, even for small message sizes, mapping impacts performance.

Figure 5 (top) presents the rank correlation coefficient (RCC) val-
ues for predictions based on prior features (maximum dilation, av-
erage bytes per link and maximum bytes on a link). In most cases,
we find that the highest value for RCC is 0.91, i.e., the pairwise
ordering of 91% of mapping pairs was predicted correctly. For a
testing set of 28 samples, an RCC of 0.91 implies the incorrect
prediction of the pairwise ordering of 38 mapping pairs. A notable
exception is the 512 bytes case for 3D Halo where the RCC is 0.96.
In contrast, for 16 KB message sizes, the highest RCC is only 0.86.

In the case of 2D Halo and 3D Halo, the maximum bytes on a
link feature has the highest RCC while maximum dilation performs
very poorly with an RCC close to 0.60. However, for Sub A2A,
average bytes per link is a better predictor than maximum bytes on
a link for small to medium message sizes (by 4-5%). These results
substantiate the use of maximum bytes and average bytes as simple
and reasonably accurate metrics.

The metric for absolute performance correlation, R2, is also shown
in Figure 5. For all benchmarks and message sizes, maximum bytes
on a link performs the best with a score of up to 0.95 for 3D Halo
and Sub A2A. This indicates that scikit was able to find a fit us-
ing maximum bytes that had a strong correlation for observed and
predicted values.

5.3 New features
Section 3 explained the life cycle of a message on the Blue Gene/Q
torus network and the resources on the network such as links, buffers
and injection FIFOs that can affect the communication performance.
We have already shown strong correlation with performance for
one such factor, maximum bytes on any link, in Section 5.2. In this
section, we introduce two new kinds of derivations of the applica-
tion data that may be useful in improving the performance predic-
tion. Then, we present the prediction success for these new features
based on data derived from counters, generated by the analytical
program, and the new derivations of both.

We propose new metrics/features based on the buffer length, de-
lay and FIFO lengths (see Table 1) and derive others by extracting
counters and analytical data for outlier nodes and links:
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Figure 5: Prediction success based on prior features. The best
RCC score is 0.91 for most cases - 68 mispredictions out of 768.

Average Outliers (AO) We define a node or link as an average
outlier if an associated value for it is greater than the average
value of the entire data set. Selection of data points based on
the average value helps eliminate low values that can skew
derived features and hide information that may be useful.

Top Outliers (TO) Similar to the average outlier, we can define a
node or link to be a top outlier if an associated value for it is
within 5% of the maximum value across the entire data set.

We can use these two outlier selection criteria to define metrics that
represent the features extracted from outliers. We now focus on
prediction using the following features that had the highest RCC
among a large set of features that we explored: average buffer
length (avg buffer), average buffer length of TO (avg buffer TO),
sum of maximum dilation for AO (sum dilation AO), average bytes
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Figure 7: Prediction success based on hybrid features from Table 3. We obtain RCC and R2 values exceeding 0.99 for 3D Halo and
Sub A2A. Prediction success improves significantly for 2D Halo also.

0.93 to 0.975 and 0.955 for the 16 KB and 4 MB message sizes
respectively. For the more communication intensive benchmarks,
we obtained R2 values as high as 0.99 in general. Hence, the use
of hybrid features not only predicts the correct pairwise ordering
of mapping pairs but also does so with high accuracy in predicting
their absolute performance.

5.5 Summary
Figure 8 presents the scatter-plot of predicted performance for the
three benchmarks for the 4 MB message size. On the x-axis are the
task mappings sorted by observed performance, while the y-axis
is the predicted performance. The feature set H3: avg bytes, max
bytes, avg buffer, max FIFO was used for these predictions. It is
evident from the figure that an almost perfect ordering is achieved
for all three benchmarks.

Figure 9 shows the prediction success for the three benchmarks on
65,536 cores of BG/Q. From all the previously presented features
(prior, new and hybrid), we selected the ones with the highest RCC
scores for 16,384 cores, and present only those in this figure. We
obtain significant improvements in the prediction scores using hy-

brid features for prediction in comparison to single features such as
max bytes and avg bytes TO. For Sub A2A, RCC improved by 14%
from 0.86 to 0.98 , with a RCC value of 1.00 for both 512 bytes
and 4 MB message sizes. For 2D Halo and 3D Halo, an improve-
ment of up to 8% was observed in the prediction success. Similar
trends were observed for R2 values.

6. COMBINING ALL TRAINING SETS
In the previous section, we presented high correlation for predict-
ing performance of the three benchmarks. For the prediction of
individual benchmarks, the training and testing sets were generated
from the 84 different mappings of the same benchmark for a par-
ticular message size on a fixed core count. In this section, we relax
these requirements, and explore the space where the training and
testing sets are a mix of different benchmarks, message sizes and
core counts.

6.1 Combining samples from different kernels
We first explore the use of training and testing sets that are a combi-
nation of all three benchmarks and both 16 KB and 4 MB message

Figure 8: Scatter plot of predicted performance (for 2D Halo, 3D Halo and Sub A2A in order) using hybrid features. Mappings
sorted by observed performance are used as the x-axis.
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Leads to several problems ...

• Individual jobs run slower:

• More time to complete science simulations

• Increased wait time in job queues

• Inefficient use of machine time allocation/core-hours

• Overall lower throughput

• Increase energy usage/costs
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Also affects software development

• Debugging performance issues

• Quantifying the effect of various software changes on 
performance

• code changes

• compiler/software stack changes

• Requesting time for a batch job

• Writing allocation proposals
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Sources of variability

• Operating system noise (OS jitter)

• OS daemons running on some cores of each node

• Placement/location of the allocated nodes for the job 
(Allocation shape)

• Contention for shared resources (Inter-job 
contention)

• Sharing network links with other jobs
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MILC job in green 27.8% higher messaging rate,
LSMS is not communication-heavy
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Three conflicting 
jobs, two MILC

2.29X higher messaging rate
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Performance tip!

• Variability insignificant on IBM Blue Gene systems

• OS noise and allocation shape have a weak 
correlation with performance

• The placement of other jobs around a job can affect 
its performance significantly
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Modeling job placements and 
message routing

• Dragonfly topology: a two-level hierarchical topology

• Routing choices: static (deterministic) vs. dynamic 
(adaptive), direct vs. indirect (random jumps)

• Placement options: random, round-robin, blocked
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THE DRAGONFLY TOPOLOGY

Fig. 1: The structure of a dragonfly network

Two prominent implementations of multi-level direct net-
works are the PERCS interconnect by IBM [3] and the Cascade
system by Cray [4]. We focus on the Cascade system which
is based on the dragonfly topology designed by Kim et al. [1].
The Cascade (Cray XC30) system uses the Aries router as
its building block and has been used in supercomputers such
as Edison at NERSC, Lawrence Berkeley National Laboratory
and Piz Daint at the Swiss National Supercomputing Centre.

In this paper, we use the dragonfly topology to build a
prospective 100+ Petaflop/s system. The parameters for this
prototype machine are inspired by the Cray Cascade system.
We have, however, simplified the router and link bandwidths
for ease of modeling. The building block is a network router
with 30 network ports and 4 processor ports (Figure 1). Each
network router is connected to four compute nodes (of 24 cores
each) through the processor ports. Sixteen such routers form
a chassis and six chassis are combined together to form a
group (16 ⇥ 6 = 96 routers in total). Each network router is
connected to all other routers in its chassis (15 ports) and to
the corresponding routers in five other chassis (5 ports). These
links along rows and columns in the group are called level 1
(L1) links in this paper. The remaining 10 ports are used to
connect to network routers in other groups. These inter-group
links form the second level (L2) of the network. L1 and L2
links together form a two-level direct network.

We take 960 such groups comprised of 96 routers (384
nodes) each to build a very large dragonfly system. This
machine has 8,847,360 cores (8.8 million) and extrapolating
the Edison system — a peak performance of 164.5 Petaflop/s.
Two major differences between the prototype machine used in
the paper and the Cray Cascade system are: 1. There is only
one L1 link between each pair of routers along the column
whereas the Cascade machine has three such links leading
to three times the bandwidth in that dimension, 2. Cray only
allows for 240 groups which leads to 4 links connecting each
pair of groups and hence much higher bandwidth.

Related Work: Formal models such as LogP [8] and
LogGP [9] have been used to analyze the communication in
parallel applications for a long time. Subsequently, based on
the LogP model, models such as LoPC [10], LoGPC [11],
LoGPG [12], LogGPO [13], and LoOgGP [14] were developed
to account for network congestion. Unlike the model in this
paper, these models do not consider routing protocols to model
congestion and do not model the traffic on individual links.
Simulators based on these models, e.g. LogGOPSim [15],
simulate application traces and are closer to our work.

Hoefler et al. [16] developed models for the traffic on
individual links in the presence of congestion for three different

network topologies – 3D torus, PERCS and Infiniband. Bhatele
et al. used BigSim [17], a discrete-event simulator to study
application performance under different task mappings and
routings on an IBM PERCS machine [5]. The unusually long
time spent in each BigSim simulation prompted the authors to
use analytical modeling in this paper. Chakaravarthy et al. [18]
present a formal analysis of the mappings proposed in our
previous publication [5] and some new mappings.

Three things distinguish this work from the previous com-
munication and congestion modeling work. First, we consider
different alternative routings with adaptivity and study their
impact on network throughput. Second, we consider repre-
sentative job workloads at supercomputing sites and simulate
different routings and job placement strategies for these work-
loads. Third, this paper presents analysis for the dragonfly
network at an unprecedented scale (8.8 million cores).

III. PREDICTION METHODOLOGY FOR LINK UTILIZATION

Modeling is a powerful tool to explore design choices for
future systems; it is also useful for analyzing scenarios that
are challenging or expensive to deploy on existing systems.
We present a model and its implementation to predict network
throughput for dragonfly networks.

A. Prediction Model

In order to compare the relative benefits of different job
placement policies and routing strategies, we have developed
a model that generates the traffic distribution for all network
links given a parallel communication trace. Our hypothesis
is that the traffic distribution is indicative of the network
throughput we can expect for a given scenario. The inputs
to this model are:
— A network graph among dragonfly routers, N = (V,E).
— An application communication graph for one time step or
phase in terms of MPI ranks, AC = (V C , EC).
— A job placement/mapping of MPI ranks to physical cores.
— A routing strategy, <.

The model accounts for contention on network links and
outputs the expected traffic on all network links for each phase
of the application. All communication in one time step or phase
is assumed to be occurring simultaneously on the network
and all messages for the phase are considered to be in flight.
For each phase, an iterative solve is performed to get the
probabilistic traffic distribution on the links. Only one iteration
may be needed for simple cases, such as the direct routing. The
iterative solve in the model is described below.
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Fig. 6: Many to many pattern (M2M): direct routing with randomized placement has lower average and maximum traffic.

on near-by physical cores, such communication pattern arise.
Figure 4 (bottom) shows the expected distribution of traffic for
execution of Spread on the full system.

The first thing to observe is that almost all links are utilized
irrespective of the job placement and the routing. This is
a direct impact of the spread of the communicating pairs
that the benchmark provides. Another effect of the spread
is the minimal impact of the job placement on the load
distribution. Next, we note that while the average quality of the
distribution has improved, the gap between the maximum and
other data points (average, median and quartiles) has increase
significantly for indirect routings. Similar observation can be
made for direct routing with randomized placement if we
compare with the results for M2M. Further analysis of L1
and L2 links traffic distribution shows that such a skewness is
caused by overloading of certain L1 links. We believe this
is caused by non-uniformity in the communication pattern
— randomization of communication patterns is probably not
uniformly distributing them.

The next important observation from the Figure 4 (bottom)
is the lower values of all data points (minimum, quartiles,
average, and maximum) for direct routing in comparison to
the indirect routing. This result is similar to what we described
in M2M — given a sufficiently distributed communication
pattern, indirect routing only adds extra traffic because of the
extra hops it takes. Finally, we note that the adaptive versions
of the routings reduce the maximum traffic by up to 10%.
Other than that, they provide a very similar distribution. As we
saw in M2M, the AH routing provides a distribution similar
to AI with lower maximum traffic due to use of direct routes.

F. Summary of Full System Predictions

Based on the analysis so far, we list the following summa-
rizing points for single jobs executed on full systems:

— For patterns with many communicating nearby MPI ranks,
blocking may reduce the average and quartiles (UMesh).
— Direct routing may overload a few links, especially L2 links,
if the communication is distribute evenly (4D Stencil, M2M).
— Randomized placement spreads traffic for patterns with
non-uniform distribution of traffic (4D Stencil, M2M).
— Indirect routing is helpful in improving the distribution of
traffic, but typically increases the average traffic (all patterns).
— If the communication pattern and job placement spreads
the communication uniformly, indirect routing may increase
the quartiles and the maximum traffic (M2M, Spread).
— Adaptive routing typically provides a similar traffic distribu-
tion, but may lower the maximum traffic significantly. Thus,
in order to save space, we avoid showing results for static
routings in the rest of the paper.
— Adaptive hybrid provides a traffic distribution similar to AI,
but may provide a higher or lower maximum traffic depending
on the relative performance of AD and AI.

G. Variations in Job Size

We now present a case study in which one of the patterns,
M2M, is executed in isolation on the full system, but occupies
only a fraction of the cores. For comparison, we use M2M
predictions on the full system from Figure 6 (top) and traffic
distributions presented in Figure 7 for predictions using 66%
and 33% of cores in isolation.

We observe very similar trends in traffic distribution across
job placements and routings as we move from predictions

8

input parameters were provided: 1) communication pattern
based on MPI ranks, 2) mapping of MPI ranks to physical
cores, 3) system configuration including the routing strategy.
Depending on the communication pattern and the routing,
different core counts were used for runs. Typically, for SD
and AD routing schemes, 512 cores were used to complete
the simulation in ⇡ 5 minutes. For the remaining routings,
2, 048 cores were used to simulate the lighter communication
patterns, such as structured grid, in up to ⇡ 30 minutes. For
heavy communication patterns, e.g. many to many, 4096�8192
cores were required to finish the runs in up to two hours.

V. PREDICTIONS FOR SINGLE JOBS

The first half of the experiments are focused on under-
standing network throughput for single job execution on the
dragonfly interconnect. We begin this section with a brief guide
on how to analyze the box plots presented in the rest of the
paper. Following it, the four communication patters are studied
in detail. Finally, we present prediction results for the case in
which the many-to-many pattern is executed in isolation on
the system with variation in the number of cores used by it.

A. Description of the Plots

Figure 2 shows a typical box plot used in this paper. The
x-axis contains combinations of routing strategies and job
placement policies, which are grouped based on the routing
strategy. The log scale based y-axis is the amount of traffic
flowing on links in megabytes. For each combination of job
placement and routing, six data points are shown — the
minimum traffic on any link, the first quartile – 25% of links
have lesser traffic than it, the median traffic, the average traffic
on all the links, the third quartile – 75% of links have lesser
traffic than it, and the maximum traffic on any link. The plot
also shows a horizontal dotted blue line that indicates the
lowest maximum traffic among all the combinations.
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Fig. 2: Example to explain the data displayed in the plots.

Very high value of maximum traffic relative to other
data point indicates network hotspots . Hence, it is a good
measure to identify scenarios whose throughput is impacted
by bottleneck link(s). The average traffic is an indicator of
the overall load on the interconnect. It is helpful in finding
scenarios that reduce total traffic and hops taken by the
messages. Comparing the average with median is valuable for
estimating the distribution. If average is significantly higher
than the median (P1 in Figure 2), the distribution is skewed
to the right — most of the links have relatively low traffic,
but a long tail stretches to the right. In contrast, if median

is higher than the average, the distribution is skewed to the
left — most of the links have more traffic than the average,
but a long tail stretches to the left. Finally, the quartiles can
be used to find more information about how much fraction
of the links had what volume of traffic flowing through them.
Overall, we suggest that a distribution with closer values of
these data points is good for network throughput. In case of
similar distributions, lower values are better for throughput.

B. Unstructured Mesh Pattern (UMesh)

In this pattern, each MPI rank r communicates with 6 �
20 other MPI ranks in its neighborhood (within range [r-30,
r+30]). Such a pattern is representative of unstructured mesh
based and particle in cell (PIC) codes with space filling curve
based mapping of MPI ranks (e.g. morton ordering).

Effect of Job Placement: Figure 3 (top) presents the expected
link utilization when UMesh is executed on the full system. It
can be seen that as we increase the blocking in job placement,
the maximum, the average, and the quartiles decrease signif-
icantly. For UMesh with many communicating nearby MPI
ranks, this trend is observed because increasing blocking from
nodes to router avoids network communication. Additionally, it
may also decrease the number of hops traversed by messages,
since it places most communicating MPI ranks within a chassis
or a group (as we move from RDR to RDC and RDG).

Effect of Indirect Routing: Comparison among routings
shows that the use of any form of indirect routing leads to an
increase in average traffic on the links, a trend that is seen in all
results presented in this paper. This is expected since indirect
routing forces use of extra hops. However, indirect routing
also leads to a more uniform distribution of loads on the links
which is demonstrated by the closes values of the quartiles.
Also, the median for most of indirect routing is close to the
average for indirect routing, in contrast with direct routing for
which median is mostly zero (indicating a distribution skewed
to the left). Note that although indirect routing increases the
average, owing to a better distribution, the maximum is never
worse than the direct routings for a given job placement. These
characteristics indicate better network throughput for indirect
routing in comparison to direct routing.

We also observe that for direct routing with RRN and RRR
placements (shown for SD in Figure 3 (bottom)), only a few
L2 links are being used heavily, thus increasing the overall
maximum. These are the L2 links that connect the consecutive
groups which are used by the communication among nearby
MPI ranks mapped to the nodes and routers placed in a
round-robin manner. Indirect routing offloads these L2 links
by distributing the traffic to other unused L2 links.

Effect of Adaptivity: We observe that the expected traffic for
adaptive versions of the routing schemes have very similar
distribution to the static version with similar or lesser corre-
sponding values for the data points of interest. In particular, for
RDC and RDG, the AI routing scheme reduces the maximum
traffic by 50% in comparison to its static counterpart, SI.
We attribute this improvement to unloading of overloaded
L1 links. As shown in Figure 3 (bottom), comparison of the
average suggests that the L1 links are more loaded which is
expected given the dominant nearby MPI rank communication
in UMesh. For RDC and RDG, the AI routing is able to
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Fig. 8: Parallel workloads traffic distribution.

We make the following conclusions from these results:
1) Single capability jobs may have a significant impact on the
traffic distribution of a workload, especially on its skewness
as shown by the impact of 4D Stencil, 2) Similar traffic
distributions are observed for workloads with the same set of
jobs executing in different proportions, 3) The adaptive hybrid
routing is able to combine positive features of AD and AI,
thus providing a better traffic distribution.

B. Job-specific Routing

Results presented in this section are for another interesting
scenario in which each job in a workload is allowed to use
a routing of its choice. This is currently not allowed on most
systems but might become a useful option as system sizes
increase further. We use Workload 2 and Workload 4 from
Table II for these experiments. For each job, we select the
routing that resulted in the lowest maximum traffic for a given
job placement when the job was run by itself (Section V).

Comparison of the traffic distribution for Workload 2,
shown in Figure 9, with the results in Figure 8 (b) indicates
that the distribution for job-specific routing is most similar to
that of AH. However, for certain job placements, e.g. RDN
and RDR, it has lower values for minimum traffic and first
quartiles — a characteristic shown by AD routing for Workload
2. This is not surprising because Workload 2 is dominated by
M2M and Spread, and AD and AH were the best routings.
An important observation to make is that the use of job-
specific routing reduced the maximum traffic on any link for all
job placements. Similarly, for Workload 4, the distribution of
traffic for job-specific routing is similar to the load distribution
for AI (Figure 8 (d)) which was the best performing routing

Fig. 9: Job-specific routing traffic distribution (All Links).

for UMesh and 4D Stencil that dominate it. It also provided
similar maximum traffic for best performing job placements.

VII. CONCLUSION

In this paper, we presented a comparative analysis of
various routing strategies and job placement policies w.r.t.
network link throughputs for the dragonfly topology. We
have developed a congestion-aware model to determine the
traffic distribution given a communication trace and a routing
strategy. The output of this model is used to answer the
questions we posed in the introduction. The answer to the
first question is more nuanced than the other two because it
depends heavily on the application communication patterns.
The general observations are that a randomized placement at
the granularity of nodes and routers and/or indirect routing can
help spread the messaging traffic over the network and reduce
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Summary

• Optimizing communication is the #1 priority

• Minimize off-node communication

• Map remaining off-node communication carefully

• Job placements and mapping are non-intrusive 
methods for improving performance

• Going forward: modeling and simulation will be 
crucial for:

• designing future networks

• predicting application performance
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