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•  Tianhe-‐2	  
•  ~34	  PFlop/s	  Linpack	  
•  ~18	  MW	  power	  
•  Goal:	  ExaFlop/s	  at	  
20MW	  

•  ~26	  Mmes	  more	  
energy	  efficiency	  
needed	  

Top500.org	  November	  2013	  
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•  Caches	  consume	  a	  large	  fracMon	  of	  
processor’s	  power	  
– 40%	  in	  POWER7,	  a]er	  many	  techniques	  

•  Ge_ng	  larger	  every	  day	  
–  Intel	  Xeon	  E7-‐88702:	  30MB	  of	  SRAM	  L3	  
–  IBM	  POWER8:	  96MB	  of	  eDRAM	  L3	  

•  Fixed	  design,	  but	  applicaMons	  are	  different	  
– E.g.	  potenMally	  no	  locality	  in	  pointer	  chasing	  “Big	  
Data”	  
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•  Scenario:	  NAMD	  on	  Blue	  Waters	  
– HIV	  simulaMons,	  only	  64	  million	  atoms	  

•  48	  bytes	  atom	  state	  (posiMon	  &	  velocity)	  
•  Some	  transient	  data	  (mulMcasts)	  
•  Assuming	  400	  bytes/atom,	  25.6	  GB	  

–  4000	  Cray-‐XE	  nodes	  
•  32	  MB	  of	  L2	  and	  32	  MB	  L3	  each	  -‐>	  256	  GB	  of	  cache!	  
•  90%	  of	  capacity	  not	  unused	  
•  (there	  is	  nothing	  wrong	  with	  NAMD!)	  

–  16	  days	  wall	  clock	  Mme,	  not	  best	  use	  of	  caches..	  
Huge	  waste!	  

Structure of the HIV capsid 

Capped fullerene cone 

Pentamers introduce  
sharp declinations 

Continuously changing 
curvature in the 
hexagonal lattice  

Ganser, B. K. (1999). 
 Science, 283, 80–83 

Briggs, J.  et al. (2006). Structure, 14, 15–20 

Highly  
schematic 
model; 
beads are 
not 
proteins! 
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•  Turning	  off	  cache	  ways	  to	  save	  energy	  
proposed	  

•  Two	  main	  issues:	  
– PredicMng	  the	  applicaMons	  future	  	  
– Finding	  the	  best	  cache	  hierarchy	  configuraMon	  	  

•  We	  solve	  both	  on	  HPC	  systems	  
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•  Many	  processors	  are	  commodity	  
– Not	  necessarily	  designed	  for	  HPC	  

•  Provisioning	  different	  than	  non-‐HPC	  
– No	  mulM-‐programming,	  Mme-‐sharing,	  co-‐locaMon	  
– Large,	  long	  jobs	  
– High	  Predictability	  
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•  ProperMes	  of	  algorithms	  in	  common	  HPC	  apps:	  
–  ParMcle	  interacMons	  (MiniMD	  and	  CoMD)	  

•  Force	  computaMon	  of	  enMMes	  
•  Small	  domain,	  high	  temporal	  locality	  

–  Stencil	  computaMons	  (CloverLeaf	  and	  MiniGhost)	  	  
•  Update	  of	  grid	  points	  with	  stencils	  
•  Large	  domain,	  low	  temporal	  locality	  

–  Sparse	  Linear	  Algebra	  (HPCCG,	  MiniFE,	  and	  MiniXyce)	  	  
•  Update	  of	  grid	  points	  with	  SpMV	  
•  O]en	  large	  domain,	  low	  temporal	  locality	  
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•  HPC	  applicaMons	  are	  iteraMve	  	  
– Persistence:	  Same	  paqern	  repeats	  
– RTS	  can	  monitor	  applicaMon,	  predict	  future	  

•  Single	  Program	  MulMple	  Data	  (SPMD)	  
– Different	  processors	  doing	  the	  same	  thing	  
– RTS	  can	  try	  cache	  configuraMons	  exhausMvely	  

•  RTS	  can	  apply	  best	  cache	  configuraMon	  
– Monitor,	  re-‐evaluate	  regularly	  
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•  RTS	  tracks	  SequenMal	  ExecuMon	  Blocks	  (SEBs)	  
– ComputaMons	  between	  communicaMon	  calls	  

•  	  IdenMfied	  by	  characterisMc	  informaMon	  
– CommunicaMon	  calls	  and	  their	  arguments	  
– DuraMon	  
– Key	  performance	  counters	  

•  Usually	  repeated	  in	  every	  iteraMon	  
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•  Hierarchical	  iteraMon	  structure	  

PE	  0	  

PE	  3	  

PE	  1	  

PE	  2	  

Overall	  iteraMon	  

sub
iter	  
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•  RTS	  needs	  to	  idenMfy	  iteraMve	  structure	  
– Difficult	  in	  most	  general	  sense	  

•  Using	  Formal	  Language	  Theory	  
– Define	  each	  SEB	  as	  a	  symbol	  of	  an	  alphabet	  Σ	  
– An	  iteraMve	  structure	  is	  a	  regular	  language	  

•  Easy	  to	  prove	  by	  construcMon	  
– Each	  execuMon	  is	  a	  word	  
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•  In	  profiling,	  RTS	  sees	  a	  stream	  of	  SEBs	  (symbols)	  
– Needs	  to	  recognize	  the	  paqern	  
–  Learning	  a	  regular	  language	  from	  text	  
–  Build	  a	  DeterminisMc	  Finite	  Automaton	  (DFA)	  

•  Prefix	  Tree	  Acceptor	  (PTA)	  
– A	  state	  for	  each	  prefix	  
– Not	  too	  large	  in	  our	  applicaMon	  

Our approach in the RTS can be summarized as follows:

1) Determine iterations (and relevant SEBs)
2) Ensure the SEBs are the same across processors
3) Run different configurations on different processors

and find the best in performance and power/energy
efficiency

4) Apply the best configuration to all processors
5) Observe the execution and repeat if behavior changes

Note that we depend on the fact that SEB characteristics are
the same or similar on different processors. This follows from
the Single Program Multiple Data (SPMD) paradigm assumed
in most distributed memory parallel languages, such as MPI.

B. Generalization

Most scientific applications are structured: they can have
multiple phases in each overall iteration, but these phases
are also often iterative, forming a “hierarchical” iteration
structure. For example, Figure 3 depicts different phases of
MILC on four processors. This is a timeline diagram, where
different phases (e.g domain updates with nearest neighbor
communication, and CG solve) are color-coded differently.
Note that the executions of four processors are stacked, but
they appear very similar.

Using Formal Language Theory, the hierarchical iterative
structure of an HPC application can be modeled as a Regular
Language. We define each unique SEB (found by examining
the characteristic information) as a symbol a of an alphabet
⌃. Each application execution might have a different number
of iterations and hence, is a word of the language.

Theorem. A hierarchical iterative pattern is a regular lan-
guage.

Proof by construction: Each execution is a number of
repeated iterations. Therefore, the pattern can be written as a
regular expression of this form: (a0, a1, ..., ad)⇤, where each
ai is a regular expression. The regular expression for each ai
can also be constructed in the same way. In a finite number
of steps, the whole regular expression can be constructed
recursively. Hence, the language is regular, since it has a
regular expression.

The general problem of finding the application’s pattern
(to use for phase change detection) is a pattern recognition
problem. Using our formulation, it can be modeled as a
classical Formal Language Theory problem: learning a regular
language from text [33], [34]. During the application profiling,
we collect a stream of symbols that are from a regular
language, and we need to infer the language.

In the profiling phase, we gather a string of symbols
(Sample S) of the language by monitoring the SEBs. We need
to infer the grammar to build a deterministic finite automaton
(DFA). Recall that a DFA is a tuple (⌃, Q, q�, F,�) where ⌃
is a finite alphabet, Q is a finite set of states, q� is an initial
state (q� 2 Q), F is a set of final states (F ✓ Q), and � is a
transition function (� : Q ⇥ ⌃ ! Q). For example, Figure 3
can be rewritten as a list of symbols: a0a1a2a3...

A simple solution is to use a prefix tree acceptor
(PTA) [35], [34]. A PTA is a tree-like DFA that has all the

Fig. 3. Timeline view of phases of MILC: time is on x axis and four
processors are stacked on y axis. Colors represent different computations.
This figure illustrates the regular iterative pattern of MILC.

q�start qa qab qabc
a b c

Fig. 4. PTA for sample abc

prefixes of the sample as states, and is strongly consistent with
the sample, which means that it only accepts the sample4.
Algorithm 1 demonstrates how a PTA can be built from a
sample. Figure 4 illustrates an example PTA that is built by
this algorithm for a small sample.

Algorithm: Build-PTA
Input: Sample S
Output: DFA A=(⌃, Q, q�, F,�)
F  ;;
Q {qu : u 2 PREF (S)};
for qu·a 2 Q do

�(qu, a) qu·a;
end
F  F [ {qS};

Algorithm 1: Build PTA from sample

Learning from text by a PTA can be challenging since the
number of states can grow large. However, in practice, the
number of SEBs that execute in the profiling stage is small.
Furthermore, the number of DFA states can be reduced easily.
For example, the application might have 1000 relaxation steps
followed by 1000 CG steps in each overall iteration. This
translates to 2001 DFA states. To reduce this number, we
combine all of the CG steps together to form only one symbol
since the same SEB is repeated. This fits our purpose since
similar SEBs will have the same cache configuration. In this
way, our example will have only three states in its DFA. Note
that state merging techniques can be used to merge compatible
states, but for practical cases, the number of states is already
very small after applying our technique.

The inferred DFA (equivalent to a regular expression) will
be used for the rest of the application execution by the RTS
to predict the future of the application. In this formulation,
predicting the future of the application is similar to simple
pattern matching of regular expressions. For example, the
pattern of NAMD which performs FFT for long range force
calculations is similar to the regular expression (a3b)⇤. MILC’s

4We have simplified the definitions and the algorithm for our purpose but in
general, there can be multiple positive and negative samples of the language
to learn from.
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•  Mantevo	  mini-‐app	  suite	  
– RepresentaMve	  inputs	  
– Assume	  MPI+OpenMP	  
–  IdenMfy	  unique	  SEBs	  

•  SESC	  cycle-‐accurate	  simulator	  
– Simulate	  different	  configuraMons	  for	  each	  SEB	  

•  Model	  cache	  power/energy	  using	  CACTI	  
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in parallel for each access (for less latency), while only one
way of the L3 cache is activated for each access, since L3 is
not in the critical path of the processor. Thus, turning off the
ways of the L1 and L2 will save dynamic energy, while it will
only save leakage energy in the L3 cache.

TABLE I. SIMULATED PROCESSOR’S PARAMETERS

Chip 8 Core CMP
Core MIPS32, 4 issue out-of-order processor
Instruction L1 (L1I) 32 KB, 2 way
Data L1 (L1D) 32 KB, 4 way, WT, private.
L2 256 KB, 8 way, WB, private.
L3 16 MB, 16 banks, 16 way, WB, shared
Technology node 32 nm
Frequency 3.4 GHz

In this work, we consider the properties of the application
domains for our selection of the input sizes. For example, in
stencil codes each element represents a point in the physical
domain and the iteration’s computation is linear in the input
size. Consequently, large sizes are more common and practical.
On the other hand, large input sizes are less common in molec-
ular dynamics since the force computation in each iteration is
not linear in the number of atoms and molecules. Table II
presents the input size per processor of each application in
our experiments. These sizes are small compared to weak
scaling runs that fill the node’s main memory, but they are used
for typical strong scaling runs. In addition, input sizes larger
than the LLC usually behave similarly because of common
streaming patterns discussed in Subsection II-B. We study the
effect of input size more extensively in different experiments.

TABLE II. APPLICATION DOMAIN SIZES

Mini-App Input Domain Size per Processor
CloverLeaf 960⇥ 960 grid
CoMD 2744 boxes (including halo)
NPB-FT 128⇥ 128⇥ 32 grid
HPCCG 60⇥ 60⇥ 60 grid
miniFE 50⇥ 50⇥ 50 grid
miniGhost 100⇥ 100⇥ 100 grid
miniMD 6083 atoms (including halo)
miniXyce 602 variables

B. Results

Table III presents the cache configurations that result in
the best energy efficiency, with only slight execution time
penalty (0.5% penalty threshold). As can be seen, in most
cases, half of the first level instruction cache and three quarters
of the first level data caches were turned off for the best
energy efficiency. The reason is that turning off ways of L1
caches can save a lot of energy, since they are the closest to
the processor and have many more accesses. However, naive
shutdown of ways of L1 caches can be detrimental, since they
are critical for performance and increasing their miss rates can
hurt performance significantly. In our simulation results (not
presented here), some configurations with small L1 caches and
not enough capacity in other caches resulted in more than one
order of magnitude slow-down. Thus, the other levels need
to have enough capacity to back up lower level caches, and
configurations should be selected carefully.

The only configuration with multiple L1D ways enabled is
for miniMD. The reason is that the working set (data structures

of atoms) fits in the L1 cache. Because of the high computation
per data element in molecular dynamics programs (discussed
in Section II), the benefit of having them in L1 exceeds the
power saving of turning off its ways.

Filtering Configurations: We try all the configurations
exhaustively since there are only a few SEBs but many
processors in a supercomputer. For small scale (down to one
processor) runs, one could try only the configurations that
are more likely to achieve better performance and energy
efficiency. Table III shows that the set of high performing
configurations is not diverse and only a few configurations
can be the best for different applications. More investigation
at the small scale is left for future work.
TABLE III. BEST CONFIGURATION FOUND WITH LOWEST ENERGY BUT

WITHOUT PERFORMANCE PENALTY. FORMAT: (NUMBER OF CACHE WAYS
ON)/(TOTAL NUMBER OF WAYS).

Mini-App L1D L1I L2 L3
CloverLeaf-cell 1/4 1/2 2/8 16/16
CloverLeaf-mom 1/4 1/2 2/8 16/16
CoMD 1/4 1/2 2/8 8/16
NPB-FT 1/4 2/2 4/8 16/16
HPCCG 1/4 1/2 2/8 16/16
miniFE-cg 1/4 1/2 2/8 16/16
miniFE-diffuse 1/4 1/2 1/8 1/16
miniGhost 1/4 1/2 2/8 16/16
miniMD 2/4 1/2 2/8 1/16
miniXyce 1/4 1/2 4/8 1/16

Figures 5(a) to 5(c) present the execution time penalty and
energy savings of different mini-apps due to reconfiguration,
with different performance penalty thresholds. Note that some
mini-apps have more than one significant kernel (presented
separately, such as miniFE-cg), while others are simple enough
to take the whole iteration as reconfiguration units. From this
figure, it is evident that with negligible change in execution
time (less than 0.5% performance penalty threshold, 0.2%
average actual penalty), very significant cache energy savings
(up to 88%) are possible. On average, about 40% of cache
energy consumption can be saved by just turning off ways of
caches, without a significant performance penalty.

Furthermore, a small sacrifice in performance (less than
5% threshold, 2.4% average actual penalty) can result in more
cache energy savings (about 67% on average). These small
performance differences in the computation may not result
in any performance degradation for many HPC applications
because of inter-node communication. Moreover, minimizing
cache energy without considering performance degradation
results in more savings (about 78% average savings), but it
can result in a very high penalty in some cases (6.4 times
slowdown for miniGhost). This happens for miniGhost because
its data fits in the L3 cache, but this method is trying to turn L3
ways off to save leakage energy. This is clearly a suboptimal
decision from the energy standpoint as well, because other
energy consumption sources, such as extra memory transfers,
have not been considered. One should consider other energy
sources if available for measurement consequently or cap the
performance penalty.

Figures 6(a) to 6(c) illustrate the behavior and effective-
ness of our approach for different problem sizes. Figure 6(a)
illustrates that our approach initially increases the cache size
(mostly L3) to incorporate the working set, which is the most

Format:	  <ways	  turned	  on>/<total	  number	  of	  ways>	  

Best	  configuraMon	  
depends	  on:	  	  
•  ApplicaMon	  type	  
•  Input	  size	  
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•  Streaming:	  predict	  data	  and	  prefetch	  for	  
simple	  memory	  access	  paqerns	  
– Two	  important	  parameters:	  
– Cache	  size	  to	  use	  
– Prefetch	  depth	  

•  Can	  waste	  energy	  and	  memory	  bandwidth	  
– Too	  deep/small	  cache	  evicts	  useful	  data	  
– Prefetch	  enough	  data	  to	  hide	  memory	  latency	  
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•  RTS	  can	  tune	  cache	  size	  and	  depth	  
– Similar	  to	  previous	  discussion	  

•  Hardware	  implementaMon:	  
– Prefetcher	  has	  an	  adder	  to	  generate	  next	  address	  
– One	  input	  can	  be	  controlled	  by	  RTS	  as	  a	  system	  
register	  

– Does	  not	  have	  overheads	  of	  repeMMve	  prefetch	  
instrucMons	  
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•  Wrong	  speculaMve	  path	  is	  accelerated	  with	  deeper	  prefetch	  
•  Intervenes	  with	  useful	  computaMon	  
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•  AutomaMc	  cache	  hierarchy	  reconfiguraMon	  in	  
hardware	  had	  been	  explored	  extensively	  
–  Survey	  by	  Zang	  and	  Gordon-‐Ross	  
–  Hardware	  complexity	  -‐>	  energy	  overhead	  
–  Hard	  to	  predict	  applicaMon	  behavior	  in	  hardware	  

•  Small	  “window”	  
•  Choosing	  best	  configuraMon	  

•  Compiler	  directed	  cache	  reconfiguraMon	  (Hu	  et	  al.)	  
–  Compiler’s	  analysis	  is	  usually	  limited	  

•  Many	  assumpMons	  for	  footprint	  analysis	  
–  Simple	  affine	  nested	  loops	  
–  Simple	  array	  indices	  (affine	  funcMons	  of	  constants	  and	  index	  variables)	  

•  Not	  feasible	  for	  real	  applicaMons	  
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•  Caches	  consume	  a	  lot	  of	  energy	  (40%>)	  
•  AdapMve	  RTS	  can	  predict	  applicaMon’s	  future	  
– Using	  Formal	  Language	  Theory	  

•  Best	  cache	  configuraMon	  can	  be	  found	  in	  
parallel	  (SPMD	  model)	  
– 67%	  of	  cache	  energy	  is	  saved	  on	  average	  

•  Reconfigurable	  streaming	  
–  Improves	  performance	  and	  saves	  energy	  
– 30%	  performance	  and	  75%	  energy	  in	  some	  cases	  
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•  Prototype	  machine	  (MIT	  Angstrom?)	  and	  
runMme	  (Charm++	  PICS)	  

•  Find	  best	  configuraMon	  in	  small	  scale	  
– When	  exhausMve	  search	  is	  not	  possible	  
– Using	  common	  applicaMon	  paqerns	  

•  Extend	  to	  mobile	  applicaMons	  
– Many	  modern	  mobile	  apps	  have	  paqerns	  similar	  	  
to	  HPC!	  
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