
Ehsan	
 Totoni	

Josep	
 Torrellas	

Laxmikant	
 V.	
 Kale	

	

Charm	
 Workshop	

April	
 29th,	
 2014	

2	

2	

•  Tianhe-­‐2	

•  ~34	
 PFlop/s	
 Linpack	

•  ~18	
 MW	
 power	

•  Goal:	
 ExaFlop/s	
 at	

20MW	

•  ~26	
 Mmes	
 more	

energy	
 efficiency	

needed	

Top500.org	
 November	
 2013	

3	

3	

•  Caches	
 consume	
 a	
 large	
 fracMon	
 of	

processor’s	
 power	

– 40%	
 in	
 POWER7,	
 a]er	
 many	
 techniques	

•  Ge_ng	
 larger	
 every	
 day	

–  Intel	
 Xeon	
 E7-­‐88702:	
 30MB	
 of	
 SRAM	
 L3	

–  IBM	
 POWER8:	
 96MB	
 of	
 eDRAM	
 L3	

•  Fixed	
 design,	
 but	
 applicaMons	
 are	
 different	

– E.g.	
 potenMally	
 no	
 locality	
 in	
 pointer	
 chasing	
 “Big	

Data”	

4	

4	

•  Scenario:	
 NAMD	
 on	
 Blue	
 Waters	

– HIV	
 simulaMons,	
 only	
 64	
 million	
 atoms	

•  48	
 bytes	
 atom	
 state	
 (posiMon	
 &	
 velocity)	

•  Some	
 transient	
 data	
 (mulMcasts)	

•  Assuming	
 400	
 bytes/atom,	
 25.6	
 GB	

–  4000	
 Cray-­‐XE	
 nodes	

•  32	
 MB	
 of	
 L2	
 and	
 32	
 MB	
 L3	
 each	
 -­‐>	
 256	
 GB	
 of	
 cache!	

•  90%	
 of	
 capacity	
 not	
 unused	

•  (there	
 is	
 nothing	
 wrong	
 with	
 NAMD!)	

–  16	
 days	
 wall	
 clock	
 Mme,	
 not	
 best	
 use	
 of	
 caches..	

Huge	
 waste!	

Structure of the HIV capsid

Capped fullerene cone

Pentamers introduce
sharp declinations

Continuously changing
curvature in the
hexagonal lattice

Ganser, B. K. (1999).
 Science, 283, 80–83

Briggs, J. et al. (2006). Structure, 14, 15–20

Highly
schematic
model;
beads are
not
proteins!

5	

5	

•  Turning	
 off	
 cache	
 ways	
 to	
 save	
 energy	

proposed	

•  Two	
 main	
 issues:	

– PredicMng	
 the	
 applicaMons	
 future	
 	

– Finding	
 the	
 best	
 cache	
 hierarchy	
 configuraMon	
 	

•  We	
 solve	
 both	
 on	
 HPC	
 systems	

6	

6	

•  Many	
 processors	
 are	
 commodity	

– Not	
 necessarily	
 designed	
 for	
 HPC	

•  Provisioning	
 different	
 than	
 non-­‐HPC	

– No	
 mulM-­‐programming,	
 Mme-­‐sharing,	
 co-­‐locaMon	

– Large,	
 long	
 jobs	

– High	
 Predictability	

7	

7	

•  ProperMes	
 of	
 algorithms	
 in	
 common	
 HPC	
 apps:	

–  ParMcle	
 interacMons	
 (MiniMD	
 and	
 CoMD)	

•  Force	
 computaMon	
 of	
 enMMes	

•  Small	
 domain,	
 high	
 temporal	
 locality	

–  Stencil	
 computaMons	
 (CloverLeaf	
 and	
 MiniGhost)	
 	

•  Update	
 of	
 grid	
 points	
 with	
 stencils	

•  Large	
 domain,	
 low	
 temporal	
 locality	

–  Sparse	
 Linear	
 Algebra	
 (HPCCG,	
 MiniFE,	
 and	
 MiniXyce)	
 	

•  Update	
 of	
 grid	
 points	
 with	
 SpMV	

•  O]en	
 large	
 domain,	
 low	
 temporal	
 locality	

8	

8	

1

3

5

42

6

7

8

0x03…1 0x03…2 0x03…3 0x03…4

0x05…3 0x04…4 0x05…5 0x05…6

0x07…5 0x07…6 0x07…7 0x07…8

9	

9	

•  HPC	
 applicaMons	
 are	
 iteraMve	
 	

– Persistence:	
 Same	
 paqern	
 repeats	

– RTS	
 can	
 monitor	
 applicaMon,	
 predict	
 future	

•  Single	
 Program	
 MulMple	
 Data	
 (SPMD)	

– Different	
 processors	
 doing	
 the	
 same	
 thing	

– RTS	
 can	
 try	
 cache	
 configuraMons	
 exhausMvely	

•  RTS	
 can	
 apply	
 best	
 cache	
 configuraMon	

– Monitor,	
 re-­‐evaluate	
 regularly	

10	

10	

•  RTS	
 tracks	
 SequenMal	
 ExecuMon	
 Blocks	
 (SEBs)	

– ComputaMons	
 between	
 communicaMon	
 calls	

•  	
 IdenMfied	
 by	
 characterisMc	
 informaMon	

– CommunicaMon	
 calls	
 and	
 their	
 arguments	

– DuraMon	

– Key	
 performance	
 counters	

•  Usually	
 repeated	
 in	
 every	
 iteraMon	

11	

11	

•  Hierarchical	
 iteraMon	
 structure	

PE	
 0	

PE	
 3	

PE	
 1	

PE	
 2	

Overall	
 iteraMon	

sub
iter	

12	

12	

•  RTS	
 needs	
 to	
 idenMfy	
 iteraMve	
 structure	

– Difficult	
 in	
 most	
 general	
 sense	

•  Using	
 Formal	
 Language	
 Theory	

– Define	
 each	
 SEB	
 as	
 a	
 symbol	
 of	
 an	
 alphabet	
 Σ	

– An	
 iteraMve	
 structure	
 is	
 a	
 regular	
 language	

•  Easy	
 to	
 prove	
 by	
 construcMon	

– Each	
 execuMon	
 is	
 a	
 word	

13	

13	

•  In	
 profiling,	
 RTS	
 sees	
 a	
 stream	
 of	
 SEBs	
 (symbols)	

– Needs	
 to	
 recognize	
 the	
 paqern	

–  Learning	
 a	
 regular	
 language	
 from	
 text	

–  Build	
 a	
 DeterminisMc	
 Finite	
 Automaton	
 (DFA)	

•  Prefix	
 Tree	
 Acceptor	
 (PTA)	

– A	
 state	
 for	
 each	
 prefix	

– Not	
 too	
 large	
 in	
 our	
 applicaMon	

Our approach in the RTS can be summarized as follows:

1) Determine iterations (and relevant SEBs)
2) Ensure the SEBs are the same across processors
3) Run different configurations on different processors

and find the best in performance and power/energy
efficiency

4) Apply the best configuration to all processors
5) Observe the execution and repeat if behavior changes

Note that we depend on the fact that SEB characteristics are
the same or similar on different processors. This follows from
the Single Program Multiple Data (SPMD) paradigm assumed
in most distributed memory parallel languages, such as MPI.

B. Generalization

Most scientific applications are structured: they can have
multiple phases in each overall iteration, but these phases
are also often iterative, forming a “hierarchical” iteration
structure. For example, Figure 3 depicts different phases of
MILC on four processors. This is a timeline diagram, where
different phases (e.g domain updates with nearest neighbor
communication, and CG solve) are color-coded differently.
Note that the executions of four processors are stacked, but
they appear very similar.

Using Formal Language Theory, the hierarchical iterative
structure of an HPC application can be modeled as a Regular
Language. We define each unique SEB (found by examining
the characteristic information) as a symbol a of an alphabet
⌃. Each application execution might have a different number
of iterations and hence, is a word of the language.

Theorem. A hierarchical iterative pattern is a regular lan-
guage.

Proof by construction: Each execution is a number of
repeated iterations. Therefore, the pattern can be written as a
regular expression of this form: (a0, a1, ..., ad)⇤, where each
ai is a regular expression. The regular expression for each ai
can also be constructed in the same way. In a finite number
of steps, the whole regular expression can be constructed
recursively. Hence, the language is regular, since it has a
regular expression.

The general problem of finding the application’s pattern
(to use for phase change detection) is a pattern recognition
problem. Using our formulation, it can be modeled as a
classical Formal Language Theory problem: learning a regular
language from text [33], [34]. During the application profiling,
we collect a stream of symbols that are from a regular
language, and we need to infer the language.

In the profiling phase, we gather a string of symbols
(Sample S) of the language by monitoring the SEBs. We need
to infer the grammar to build a deterministic finite automaton
(DFA). Recall that a DFA is a tuple (⌃, Q, q�, F,�) where ⌃
is a finite alphabet, Q is a finite set of states, q� is an initial
state (q� 2 Q), F is a set of final states (F ✓ Q), and � is a
transition function (� : Q ⇥ ⌃ ! Q). For example, Figure 3
can be rewritten as a list of symbols: a0a1a2a3...

A simple solution is to use a prefix tree acceptor
(PTA) [35], [34]. A PTA is a tree-like DFA that has all the

Fig. 3. Timeline view of phases of MILC: time is on x axis and four
processors are stacked on y axis. Colors represent different computations.
This figure illustrates the regular iterative pattern of MILC.

q�start qa qab qabc
a b c

Fig. 4. PTA for sample abc

prefixes of the sample as states, and is strongly consistent with
the sample, which means that it only accepts the sample4.
Algorithm 1 demonstrates how a PTA can be built from a
sample. Figure 4 illustrates an example PTA that is built by
this algorithm for a small sample.

Algorithm: Build-PTA
Input: Sample S
Output: DFA A=(⌃, Q, q�, F,�)
F ;;
Q {qu : u 2 PREF (S)};
for qu·a 2 Q do

�(qu, a) qu·a;
end
F F [{qS};

Algorithm 1: Build PTA from sample

Learning from text by a PTA can be challenging since the
number of states can grow large. However, in practice, the
number of SEBs that execute in the profiling stage is small.
Furthermore, the number of DFA states can be reduced easily.
For example, the application might have 1000 relaxation steps
followed by 1000 CG steps in each overall iteration. This
translates to 2001 DFA states. To reduce this number, we
combine all of the CG steps together to form only one symbol
since the same SEB is repeated. This fits our purpose since
similar SEBs will have the same cache configuration. In this
way, our example will have only three states in its DFA. Note
that state merging techniques can be used to merge compatible
states, but for practical cases, the number of states is already
very small after applying our technique.

The inferred DFA (equivalent to a regular expression) will
be used for the rest of the application execution by the RTS
to predict the future of the application. In this formulation,
predicting the future of the application is similar to simple
pattern matching of regular expressions. For example, the
pattern of NAMD which performs FFT for long range force
calculations is similar to the regular expression (a3b)⇤. MILC’s

4We have simplified the definitions and the algorithm for our purpose but in
general, there can be multiple positive and negative samples of the language
to learn from.

14	

14	

•  Mantevo	
 mini-­‐app	
 suite	

– RepresentaMve	
 inputs	

– Assume	
 MPI+OpenMP	

–  IdenMfy	
 unique	
 SEBs	

•  SESC	
 cycle-­‐accurate	
 simulator	

– Simulate	
 different	
 configuraMons	
 for	
 each	
 SEB	

•  Model	
 cache	
 power/energy	
 using	
 CACTI	

15	

15	

in parallel for each access (for less latency), while only one
way of the L3 cache is activated for each access, since L3 is
not in the critical path of the processor. Thus, turning off the
ways of the L1 and L2 will save dynamic energy, while it will
only save leakage energy in the L3 cache.

TABLE I. SIMULATED PROCESSOR’S PARAMETERS

Chip 8 Core CMP
Core MIPS32, 4 issue out-of-order processor
Instruction L1 (L1I) 32 KB, 2 way
Data L1 (L1D) 32 KB, 4 way, WT, private.
L2 256 KB, 8 way, WB, private.
L3 16 MB, 16 banks, 16 way, WB, shared
Technology node 32 nm
Frequency 3.4 GHz

In this work, we consider the properties of the application
domains for our selection of the input sizes. For example, in
stencil codes each element represents a point in the physical
domain and the iteration’s computation is linear in the input
size. Consequently, large sizes are more common and practical.
On the other hand, large input sizes are less common in molec-
ular dynamics since the force computation in each iteration is
not linear in the number of atoms and molecules. Table II
presents the input size per processor of each application in
our experiments. These sizes are small compared to weak
scaling runs that fill the node’s main memory, but they are used
for typical strong scaling runs. In addition, input sizes larger
than the LLC usually behave similarly because of common
streaming patterns discussed in Subsection II-B. We study the
effect of input size more extensively in different experiments.

TABLE II. APPLICATION DOMAIN SIZES

Mini-App Input Domain Size per Processor
CloverLeaf 960⇥ 960 grid
CoMD 2744 boxes (including halo)
NPB-FT 128⇥ 128⇥ 32 grid
HPCCG 60⇥ 60⇥ 60 grid
miniFE 50⇥ 50⇥ 50 grid
miniGhost 100⇥ 100⇥ 100 grid
miniMD 6083 atoms (including halo)
miniXyce 602 variables

B. Results

Table III presents the cache configurations that result in
the best energy efficiency, with only slight execution time
penalty (0.5% penalty threshold). As can be seen, in most
cases, half of the first level instruction cache and three quarters
of the first level data caches were turned off for the best
energy efficiency. The reason is that turning off ways of L1
caches can save a lot of energy, since they are the closest to
the processor and have many more accesses. However, naive
shutdown of ways of L1 caches can be detrimental, since they
are critical for performance and increasing their miss rates can
hurt performance significantly. In our simulation results (not
presented here), some configurations with small L1 caches and
not enough capacity in other caches resulted in more than one
order of magnitude slow-down. Thus, the other levels need
to have enough capacity to back up lower level caches, and
configurations should be selected carefully.

The only configuration with multiple L1D ways enabled is
for miniMD. The reason is that the working set (data structures

of atoms) fits in the L1 cache. Because of the high computation
per data element in molecular dynamics programs (discussed
in Section II), the benefit of having them in L1 exceeds the
power saving of turning off its ways.

Filtering Configurations: We try all the configurations
exhaustively since there are only a few SEBs but many
processors in a supercomputer. For small scale (down to one
processor) runs, one could try only the configurations that
are more likely to achieve better performance and energy
efficiency. Table III shows that the set of high performing
configurations is not diverse and only a few configurations
can be the best for different applications. More investigation
at the small scale is left for future work.
TABLE III. BEST CONFIGURATION FOUND WITH LOWEST ENERGY BUT

WITHOUT PERFORMANCE PENALTY. FORMAT: (NUMBER OF CACHE WAYS
ON)/(TOTAL NUMBER OF WAYS).

Mini-App L1D L1I L2 L3
CloverLeaf-cell 1/4 1/2 2/8 16/16
CloverLeaf-mom 1/4 1/2 2/8 16/16
CoMD 1/4 1/2 2/8 8/16
NPB-FT 1/4 2/2 4/8 16/16
HPCCG 1/4 1/2 2/8 16/16
miniFE-cg 1/4 1/2 2/8 16/16
miniFE-diffuse 1/4 1/2 1/8 1/16
miniGhost 1/4 1/2 2/8 16/16
miniMD 2/4 1/2 2/8 1/16
miniXyce 1/4 1/2 4/8 1/16

Figures 5(a) to 5(c) present the execution time penalty and
energy savings of different mini-apps due to reconfiguration,
with different performance penalty thresholds. Note that some
mini-apps have more than one significant kernel (presented
separately, such as miniFE-cg), while others are simple enough
to take the whole iteration as reconfiguration units. From this
figure, it is evident that with negligible change in execution
time (less than 0.5% performance penalty threshold, 0.2%
average actual penalty), very significant cache energy savings
(up to 88%) are possible. On average, about 40% of cache
energy consumption can be saved by just turning off ways of
caches, without a significant performance penalty.

Furthermore, a small sacrifice in performance (less than
5% threshold, 2.4% average actual penalty) can result in more
cache energy savings (about 67% on average). These small
performance differences in the computation may not result
in any performance degradation for many HPC applications
because of inter-node communication. Moreover, minimizing
cache energy without considering performance degradation
results in more savings (about 78% average savings), but it
can result in a very high penalty in some cases (6.4 times
slowdown for miniGhost). This happens for miniGhost because
its data fits in the L3 cache, but this method is trying to turn L3
ways off to save leakage energy. This is clearly a suboptimal
decision from the energy standpoint as well, because other
energy consumption sources, such as extra memory transfers,
have not been considered. One should consider other energy
sources if available for measurement consequently or cap the
performance penalty.

Figures 6(a) to 6(c) illustrate the behavior and effective-
ness of our approach for different problem sizes. Figure 6(a)
illustrates that our approach initially increases the cache size
(mostly L3) to incorporate the working set, which is the most

Format:	
 <ways	
 turned	
 on>/<total	
 number	
 of	
 ways>	

Best	
 configuraMon	

depends	
 on:	
 	

•  ApplicaMon	
 type	

•  Input	
 size	

16	

16	

 0

 20

 40

 60

 80

 100

CloverLeaf-cell

CloverLeaf-mom

CoMD
NPB-FT

HPCCG
miniFE-cg

miniFE-di�use

miniGhost

miniMD

miniXyce

Di
�e

re
nc

e
fro

m
 d

ef
au

lt
(%

)
Time penalty Cache energy saving

5%	
 Performance	
 Penalty	
 Threshold	

67%	
 cache	
 energy	
 saving	
 (28%	
 in	
 processor)	
 on	
 average	

17	

17	

 0

 20

 40

 60

 80

 100

10^3
20^3

30^3
50^3

100^3Di
�e

re
nc

e
fro

m
 d

ef
au

lt
(%

)
HPCCG Problem Size

Time penalty Cache energy saving

 1

 2

 4

 8

 16

10^3 20^3 30^3 50^3 100^3

Nu
m

be
r o

f E
na

bl
ed

 C
ac

he
 W

ay
s

HPCCG Problem Size

L3 Size L2 Size L1D Size

AdapMng	
 to	
 problem	
 size	
 is	
 crucial.	

18	

18	

•  Streaming:	
 predict	
 data	
 and	
 prefetch	
 for	

simple	
 memory	
 access	
 paqerns	

– Two	
 important	
 parameters:	

– Cache	
 size	
 to	
 use	

– Prefetch	
 depth	

•  Can	
 waste	
 energy	
 and	
 memory	
 bandwidth	

– Too	
 deep/small	
 cache	
 evicts	
 useful	
 data	

– Prefetch	
 enough	
 data	
 to	
 hide	
 memory	
 latency	

19	

19	

•  RTS	
 can	
 tune	
 cache	
 size	
 and	
 depth	

– Similar	
 to	
 previous	
 discussion	

•  Hardware	
 implementaMon:	

– Prefetcher	
 has	
 an	
 adder	
 to	
 generate	
 next	
 address	

– One	
 input	
 can	
 be	
 controlled	
 by	
 RTS	
 as	
 a	
 system	

register	

– Does	
 not	
 have	
 overheads	
 of	
 repeMMve	
 prefetch	

instrucMons	

20	

20	

 0.1

 0.12

 0.14

 0.16

 0.18

0 2 4 8 16 32 64 128

H
PC

C
G

 E
xe

cu
tio

n
Ti

m
e

(s
)

Prefetch Depth

1 L3 way
2 L3 ways

4 L3 ways
8 L3 ways

16 L3 ways

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

2 4 8 16 32 64 128

R
el

at
iv

e
En

er
gy

 C
on

su
m

pt
io

n

Prefetch Depth

1 L3 way
2 L3 ways

4 L3 ways
8 L3 ways

16 L3 ways

•  Small	
 gains	
 in	
 performance	
 might	
 have	
 high	
 energy	
 cost	

21	

21	

 0.001

 0.01

 0.1

 1

2 4 8 16 32 64 128

M
is

s
ra

te
 o

f L
3

ca
ch

e

Prefetch Depth

1 L3 way
2 L3 ways

4 L3 ways
8 L3 ways

16 L3 ways

 1

 1.02

 1.04

2 4 8 16 32 64 128

In
st

ru
ct

io
ns

 Is
su

ed

Prefetch Depth

1 L3 way
2 L3 ways

4 L3 ways
8 L3 ways

16 L3 ways

•  Wrong	
 speculaMve	
 path	
 is	
 accelerated	
 with	
 deeper	
 prefetch	

•  Intervenes	
 with	
 useful	
 computaMon	

22	

22	

•  AutomaMc	
 cache	
 hierarchy	
 reconfiguraMon	
 in	

hardware	
 had	
 been	
 explored	
 extensively	

–  Survey	
 by	
 Zang	
 and	
 Gordon-­‐Ross	

–  Hardware	
 complexity	
 -­‐>	
 energy	
 overhead	

–  Hard	
 to	
 predict	
 applicaMon	
 behavior	
 in	
 hardware	

•  Small	
 “window”	

•  Choosing	
 best	
 configuraMon	

•  Compiler	
 directed	
 cache	
 reconfiguraMon	
 (Hu	
 et	
 al.)	

–  Compiler’s	
 analysis	
 is	
 usually	
 limited	

•  Many	
 assumpMons	
 for	
 footprint	
 analysis	

–  Simple	
 affine	
 nested	
 loops	

–  Simple	
 array	
 indices	
 (affine	
 funcMons	
 of	
 constants	
 and	
 index	
 variables)	

•  Not	
 feasible	
 for	
 real	
 applicaMons	

23	

23	

•  Caches	
 consume	
 a	
 lot	
 of	
 energy	
 (40%>)	

•  AdapMve	
 RTS	
 can	
 predict	
 applicaMon’s	
 future	

– Using	
 Formal	
 Language	
 Theory	

•  Best	
 cache	
 configuraMon	
 can	
 be	
 found	
 in	

parallel	
 (SPMD	
 model)	

– 67%	
 of	
 cache	
 energy	
 is	
 saved	
 on	
 average	

•  Reconfigurable	
 streaming	

–  Improves	
 performance	
 and	
 saves	
 energy	

– 30%	
 performance	
 and	
 75%	
 energy	
 in	
 some	
 cases	

24	

24	

•  Prototype	
 machine	
 (MIT	
 Angstrom?)	
 and	

runMme	
 (Charm++	
 PICS)	

•  Find	
 best	
 configuraMon	
 in	
 small	
 scale	

– When	
 exhausMve	
 search	
 is	
 not	
 possible	

– Using	
 common	
 applicaMon	
 paqerns	

•  Extend	
 to	
 mobile	
 applicaMons	

– Many	
 modern	
 mobile	
 apps	
 have	
 paqerns	
 similar	
 	

to	
 HPC!	

Ehsan	
 Totoni	

Josep	
 Torrellas	

Laxmikant	
 V.	
 Kale	

	

Charm	
 Workshop	

April	
 29th,	
 2014	

