Adaptive HPC Runtime Systems 9 4

Ehsan Totoni
Josep Torrellas
Laxmikant V. Kale

Charm Workshop<g >
April 29th, 2014 oy 1

PARALLEL (D

PROGRAMMING LAB |y

ILLINOTIS

Exascale Power Challenge

* Tianhe-2
* ~34 PFlop/s Linpack
e V18 MW power

* Goal: ExaFlop/s at
20MW

e ~26 times more

energy efﬁCienCy Top500.org November 2013
needed

PPL

UIuC 2

D

Caches

e Caches consume a large fraction of
processor’s power

— 40% in POWER7, after many techniques
e Getting larger every day

— Intel Xeon E7-88702: 30MB of SRAM L3

— IBM POWERS8: 96 MB of eDRAM L3

* Fixed design, but applications are different

— E.g. potentially no locality in pointer chasing “Big
Data”

PPL

UIUC 3

I
D

Cache Energy Waste

e Scenario: NAMD on Blue Waters

— HIV simulations, only 64 million atoms
* 48 bytes atom state (position & velocity)
* Some transient data (multicasts)
e Assuming 400 bytes/atom, 25.6 GB

— 4000 Cray-XE nodes

e 32 MB of L2 and 32 MB L3 each -> 256 GB of cache!
* 90% of capacity not unused
* (there is nothing wrong with NAMD!)

— 16 days wall clock time, not best use of caches..
Huge waste!

PPL

U1UC 4

1
D

Cache Reconfiguration

* Turning off cache ways to save energy
proposed

* Two main issues:
— Predicting the applications future

— Finding the best cache hierarchy configuration

 We solve both on HPC systems

PPL

UIUC 5

HPC Systems

 Many processors are commodity
— Not necessarily designed for HPC

* Provisioning different than non-HPC
— No multi-programming, time-sharing, co-location
— Large, long jobs
— High Predictability

PPL

UIUC 6

HPC Applications

* Properties of algorithms in common HPC apps:
— Particle interactions (MiniMD and CoMD)

* Force computation of entities
* Small domain, high temporal locality
— Stencil computations (CloverLeaf and MiniGhost)
* Update of grid points with stencils
e Large domain, low temporal locality
— Sparse Linear Algebra (HPCCG, MiniFE, and MiniXyce)
* Update of grid points with SpMV
e Often large domain, low temporal locality

PPL

UIuC 7

I
D

Stencil Access Pattern

PPL

U1ucC

0x03...1 0x03...2 0x03...3 0x03...4

¢'---~"s t----~~s ,’---~“,

. .~ " ~ p N
. b . . 7 .
0 5 4 . ' .

0x05...3 0xo4.i4 0x05.{75 0x05...6
\'4

@7—E>©<J— <j. ------ :' v8 "

Adaptive RTS Approach

* HPC applications are iterative
— Persistence: Same pattern repeats
— RTS can monitor application, predict future

* Single Program Multiple Data (SPMD)

— Different processors doing the same thing
— RTS can try cache configurations exhaustively

* RTS can apply best cache configuration

— Monitor, re-evaluate regularly

PPL

UIUC 9

I
D

Reconfiguration Units

e RTS tracks Sequential Execution Blocks (SEBs)

— Computations between communication calls

* |dentified by characteristic information
— Communication calls and their arguments
— Duration

— Key performance counters

* Usually repeated in every iteration

PPL
010 10

MILC’s Pattern

 Hierarchical iteration structure

PEO ‘ Overall iteration
PE 1
PE 2 ‘

PE 3

PPL
V10 11

Identifying Iteration Structure

* RTS needs to identify iterative structure
— Difficult in most general sense

* Using Formal Language Theory
— Define each SEB as a symbol of an alphabet 2

— An iterative structure is a reqular language
e Easy to prove by construction

— Each execution is a word

PPL
010 12

Pattern Recognition

* In profiling, RTS sees a stream of SEBs (symbols)

— Needs to recognize the pattern
— Learning a reqular language from text
— Build a Deterministic Finite Automaton (DFA)

* Prefix Tree Acceptor (PTA)

PPL

U1ucC

— A state for each prefix
— Not too large in our application

start —
13

Evaluation Methodology

* Mantevo mini-app suite

— Representative inputs
— Assume MPI+OpenMP
— |dentify unique SEBs

e SESC cycle-accurate simulator

— Simulate different configurations for each SEB

* Model cache power/energy using CACTI

PPL
010 14

D

Evaluation Results

Format: <ways turned on>/<total number of ways>

Mini-App LID | LII | L2 L3

CloverLeaf-cell 1/4 172 | 2/8 | 16/16

Best configuration CloverLeaf-mom 1/4 172 | 2/8 | 16/16
depends on: CoMD 1/4 172 | 2/8 8/16
. Application tvpe NPB-FT 1/4 2/2 | 4/8 16/16
PP yP HPCCG /4 | 172 | 2/8 | 16/16

* |nput size miniFE-cg 1/4 172 | 2/8 | 16/16
miniFE-diffuse 1/4 1/2 1/8 1/16

miniGhost 1/4 1/2 2/8 16/16

miniMD 2/4 1/2 2/8 1/16

miniXyce 1/4 172 | 4/8 1/16

Evaluation Results

Time penalty mmmm Cache energy saving s

100

3lnnall

/O /O o)/ /))/ /))/ /))/ /))/

2 2 2) 2

% Yo, 2 O G 2, % o

RW %,o @ 3 % ©
%, /)’o,)) %o

Difference from default (%)

5% Performance Penalty Threshold

67% cache energy saving (28% in processor) on average

PPL
010 16

Adapt to Problem Size

‘g L3 Size —+— L2 Size —A— L1D Size —¥— . Time penalty mmm Cache energy saving
© o
= E’E 100 -
16 - -~
2 S5
C <
O °
° ., =
e o
© Y
c
w2/ A A 8
Y C
o / 0
o 1 ¥ 3]
2 : : : = ‘o N7 N7 S ‘0
g 10"3 20”3 30”3 5073 100"3 a S % S % 019
= HPCCG Problem Size HPCCG Problem Size

Adapting to problem size is crucial.

PPL
010 17

Reconfigurable Streaming

e Streaming: predict data and prefetch for
simple memory access patterns

— Two important parameters:

— Cache size to use
— Prefetch depth

* Can waste energy and memory bandwidth
— Too deep/small cache evicts useful data

— Prefetch enough data to hide memory latency

PPL
010 18

D

Reconfigurable Streaming

* RTS can tune cache size and depth

— Similar to previous discussion

 Hardware implementation:
— Prefetcher has an adder to generate next address

— One input can be controlled by RTS as a system
register

— Does not have overheads of repetitive prefetch
Instructions

PPL
010 19

D

Performance/Energy Tradeoff

* Small gains in performance might have high energy cost

1 L3way +— 4 L3 ways %16 L3 ways &

1L3way —+— 4 L3 ways -« 16 L3 ways =
2 L3 ways =<« 8 L3 ways &=

2 L3 ways -« 8 L3 ways B

-
(2]
1

0.18 c
— S
L = 14
Q0.6 | £
S 2 12L
o g
C
So14l L>), 1r
8 S
& 2 —i—
L
8 012} 0 _
(@] —
g : —F
T o
0.1 L I | |
0 2 4 8 16 32 64 128 16
Prefetch Depth Prefetch Depth

PPL
010 20

Hardware Complexities

* Wrong speculative path is accelerated with deeper prefetch

* [ntervenes with useful computation

1L3 way —— 4 L3 ways =% 16 L3 ways —=—
2 L3 ways -« 8 L3 ways =

° i
c L
8 J\
8 o1
™ '
1 r
©
Q
S o001t
%) 3
0 i
=
0'001 Il Il Il Il Il
2 4 8 16 32 64 128
Prefetch Depth
U1 C 21

Instructions Issued

1.04

1.02 -

1 L3 way —+— 4 L3 ways % 16 L3 ways -
2 L3 ways -« 8 L3 ways -8~

!
8

16 32 64 128
Prefetch Depth

I
D

Related Work

* Automatic cache hierarchy reconfiguration in
hardware had been explored extensively

— Survey by Zang and Gordon-Ross
— Hardware complexity -> energy overhead

— Hard to predict application behavior in hardware
e Small “window”
* Choosing best configuration

 Compiler directed cache reconfiguration (Hu et al.)

— Compiler’s analysis is usually limited

* Many assumptions for footprint analysis
— Simple affine nested loops
— Simple array indices (affine functions of constants and index variables)

* Not feasible for real applications

PPL
010 22

I
D

Conclusion

e Caches consume a lot of energy (40%>)

e Adaptive RTS can predict application’s future
— Using Formal Language Theory

e Best cache configuration can be found in
parallel (SPMD model)

— 67% of cache energy is saved on average
* Reconfigurable streaming

— Improves performance and saves energy
— 30% performance and 75% energy in some cases

PPL

UIUC 23

I
D

Future Work

* Prototype machine (MIT Angstrom?) and
runtime (Charm++ PICS)

* Find best configuration in small scale
— When exhaustive search is not possible

— Using common application patterns

* Extend to mobile applications

— Many modern mobile apps have patterns similar
to HPC!

PPL
010 24

I
D

Adaptive HPC Runtime Systems 9 4

Ehsan Totoni
Josep Torrellas
Laxmikant V. Kale

Charm Workshop<g >
April 29th, 2014 oy 1

PARALLEL (D

PROGRAMMING LAB |y

ILLINOTIS

