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•  Tianhe-­‐2	
  
•  ~34	
  PFlop/s	
  Linpack	
  
•  ~18	
  MW	
  power	
  
•  Goal:	
  ExaFlop/s	
  at	
  
20MW	
  

•  ~26	
  Mmes	
  more	
  
energy	
  efficiency	
  
needed	
  

Top500.org	
  November	
  2013	
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•  Caches	
  consume	
  a	
  large	
  fracMon	
  of	
  
processor’s	
  power	
  
– 40%	
  in	
  POWER7,	
  a]er	
  many	
  techniques	
  

•  Ge_ng	
  larger	
  every	
  day	
  
–  Intel	
  Xeon	
  E7-­‐88702:	
  30MB	
  of	
  SRAM	
  L3	
  
–  IBM	
  POWER8:	
  96MB	
  of	
  eDRAM	
  L3	
  

•  Fixed	
  design,	
  but	
  applicaMons	
  are	
  different	
  
– E.g.	
  potenMally	
  no	
  locality	
  in	
  pointer	
  chasing	
  “Big	
  
Data”	
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•  Scenario:	
  NAMD	
  on	
  Blue	
  Waters	
  
– HIV	
  simulaMons,	
  only	
  64	
  million	
  atoms	
  

•  48	
  bytes	
  atom	
  state	
  (posiMon	
  &	
  velocity)	
  
•  Some	
  transient	
  data	
  (mulMcasts)	
  
•  Assuming	
  400	
  bytes/atom,	
  25.6	
  GB	
  

–  4000	
  Cray-­‐XE	
  nodes	
  
•  32	
  MB	
  of	
  L2	
  and	
  32	
  MB	
  L3	
  each	
  -­‐>	
  256	
  GB	
  of	
  cache!	
  
•  90%	
  of	
  capacity	
  not	
  unused	
  
•  (there	
  is	
  nothing	
  wrong	
  with	
  NAMD!)	
  

–  16	
  days	
  wall	
  clock	
  Mme,	
  not	
  best	
  use	
  of	
  caches..	
  
Huge	
  waste!	
  

Structure of the HIV capsid 

Capped fullerene cone 

Pentamers introduce  
sharp declinations 

Continuously changing 
curvature in the 
hexagonal lattice  

Ganser, B. K. (1999). 
 Science, 283, 80–83 

Briggs, J.  et al. (2006). Structure, 14, 15–20 

Highly  
schematic 
model; 
beads are 
not 
proteins! 
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•  Turning	
  off	
  cache	
  ways	
  to	
  save	
  energy	
  
proposed	
  

•  Two	
  main	
  issues:	
  
– PredicMng	
  the	
  applicaMons	
  future	
  	
  
– Finding	
  the	
  best	
  cache	
  hierarchy	
  configuraMon	
  	
  

•  We	
  solve	
  both	
  on	
  HPC	
  systems	
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•  Many	
  processors	
  are	
  commodity	
  
– Not	
  necessarily	
  designed	
  for	
  HPC	
  

•  Provisioning	
  different	
  than	
  non-­‐HPC	
  
– No	
  mulM-­‐programming,	
  Mme-­‐sharing,	
  co-­‐locaMon	
  
– Large,	
  long	
  jobs	
  
– High	
  Predictability	
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•  ProperMes	
  of	
  algorithms	
  in	
  common	
  HPC	
  apps:	
  
–  ParMcle	
  interacMons	
  (MiniMD	
  and	
  CoMD)	
  

•  Force	
  computaMon	
  of	
  enMMes	
  
•  Small	
  domain,	
  high	
  temporal	
  locality	
  

–  Stencil	
  computaMons	
  (CloverLeaf	
  and	
  MiniGhost)	
  	
  
•  Update	
  of	
  grid	
  points	
  with	
  stencils	
  
•  Large	
  domain,	
  low	
  temporal	
  locality	
  

–  Sparse	
  Linear	
  Algebra	
  (HPCCG,	
  MiniFE,	
  and	
  MiniXyce)	
  	
  
•  Update	
  of	
  grid	
  points	
  with	
  SpMV	
  
•  O]en	
  large	
  domain,	
  low	
  temporal	
  locality	
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•  HPC	
  applicaMons	
  are	
  iteraMve	
  	
  
– Persistence:	
  Same	
  paqern	
  repeats	
  
– RTS	
  can	
  monitor	
  applicaMon,	
  predict	
  future	
  

•  Single	
  Program	
  MulMple	
  Data	
  (SPMD)	
  
– Different	
  processors	
  doing	
  the	
  same	
  thing	
  
– RTS	
  can	
  try	
  cache	
  configuraMons	
  exhausMvely	
  

•  RTS	
  can	
  apply	
  best	
  cache	
  configuraMon	
  
– Monitor,	
  re-­‐evaluate	
  regularly	
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•  RTS	
  tracks	
  SequenMal	
  ExecuMon	
  Blocks	
  (SEBs)	
  
– ComputaMons	
  between	
  communicaMon	
  calls	
  

•  	
  IdenMfied	
  by	
  characterisMc	
  informaMon	
  
– CommunicaMon	
  calls	
  and	
  their	
  arguments	
  
– DuraMon	
  
– Key	
  performance	
  counters	
  

•  Usually	
  repeated	
  in	
  every	
  iteraMon	
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•  Hierarchical	
  iteraMon	
  structure	
  

PE	
  0	
  

PE	
  3	
  

PE	
  1	
  

PE	
  2	
  

Overall	
  iteraMon	
  

sub
iter	
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•  RTS	
  needs	
  to	
  idenMfy	
  iteraMve	
  structure	
  
– Difficult	
  in	
  most	
  general	
  sense	
  

•  Using	
  Formal	
  Language	
  Theory	
  
– Define	
  each	
  SEB	
  as	
  a	
  symbol	
  of	
  an	
  alphabet	
  Σ	
  
– An	
  iteraMve	
  structure	
  is	
  a	
  regular	
  language	
  

•  Easy	
  to	
  prove	
  by	
  construcMon	
  
– Each	
  execuMon	
  is	
  a	
  word	
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•  In	
  profiling,	
  RTS	
  sees	
  a	
  stream	
  of	
  SEBs	
  (symbols)	
  
– Needs	
  to	
  recognize	
  the	
  paqern	
  
–  Learning	
  a	
  regular	
  language	
  from	
  text	
  
–  Build	
  a	
  DeterminisMc	
  Finite	
  Automaton	
  (DFA)	
  

•  Prefix	
  Tree	
  Acceptor	
  (PTA)	
  
– A	
  state	
  for	
  each	
  prefix	
  
– Not	
  too	
  large	
  in	
  our	
  applicaMon	
  

Our approach in the RTS can be summarized as follows:

1) Determine iterations (and relevant SEBs)
2) Ensure the SEBs are the same across processors
3) Run different configurations on different processors

and find the best in performance and power/energy
efficiency

4) Apply the best configuration to all processors
5) Observe the execution and repeat if behavior changes

Note that we depend on the fact that SEB characteristics are
the same or similar on different processors. This follows from
the Single Program Multiple Data (SPMD) paradigm assumed
in most distributed memory parallel languages, such as MPI.

B. Generalization

Most scientific applications are structured: they can have
multiple phases in each overall iteration, but these phases
are also often iterative, forming a “hierarchical” iteration
structure. For example, Figure 3 depicts different phases of
MILC on four processors. This is a timeline diagram, where
different phases (e.g domain updates with nearest neighbor
communication, and CG solve) are color-coded differently.
Note that the executions of four processors are stacked, but
they appear very similar.

Using Formal Language Theory, the hierarchical iterative
structure of an HPC application can be modeled as a Regular
Language. We define each unique SEB (found by examining
the characteristic information) as a symbol a of an alphabet
⌃. Each application execution might have a different number
of iterations and hence, is a word of the language.

Theorem. A hierarchical iterative pattern is a regular lan-
guage.

Proof by construction: Each execution is a number of
repeated iterations. Therefore, the pattern can be written as a
regular expression of this form: (a0, a1, ..., ad)⇤, where each
ai is a regular expression. The regular expression for each ai
can also be constructed in the same way. In a finite number
of steps, the whole regular expression can be constructed
recursively. Hence, the language is regular, since it has a
regular expression.

The general problem of finding the application’s pattern
(to use for phase change detection) is a pattern recognition
problem. Using our formulation, it can be modeled as a
classical Formal Language Theory problem: learning a regular
language from text [33], [34]. During the application profiling,
we collect a stream of symbols that are from a regular
language, and we need to infer the language.

In the profiling phase, we gather a string of symbols
(Sample S) of the language by monitoring the SEBs. We need
to infer the grammar to build a deterministic finite automaton
(DFA). Recall that a DFA is a tuple (⌃, Q, q�, F,�) where ⌃
is a finite alphabet, Q is a finite set of states, q� is an initial
state (q� 2 Q), F is a set of final states (F ✓ Q), and � is a
transition function (� : Q ⇥ ⌃ ! Q). For example, Figure 3
can be rewritten as a list of symbols: a0a1a2a3...

A simple solution is to use a prefix tree acceptor
(PTA) [35], [34]. A PTA is a tree-like DFA that has all the

Fig. 3. Timeline view of phases of MILC: time is on x axis and four
processors are stacked on y axis. Colors represent different computations.
This figure illustrates the regular iterative pattern of MILC.

q�start qa qab qabc
a b c

Fig. 4. PTA for sample abc

prefixes of the sample as states, and is strongly consistent with
the sample, which means that it only accepts the sample4.
Algorithm 1 demonstrates how a PTA can be built from a
sample. Figure 4 illustrates an example PTA that is built by
this algorithm for a small sample.

Algorithm: Build-PTA
Input: Sample S
Output: DFA A=(⌃, Q, q�, F,�)
F  ;;
Q {qu : u 2 PREF (S)};
for qu·a 2 Q do

�(qu, a) qu·a;
end
F  F [ {qS};

Algorithm 1: Build PTA from sample

Learning from text by a PTA can be challenging since the
number of states can grow large. However, in practice, the
number of SEBs that execute in the profiling stage is small.
Furthermore, the number of DFA states can be reduced easily.
For example, the application might have 1000 relaxation steps
followed by 1000 CG steps in each overall iteration. This
translates to 2001 DFA states. To reduce this number, we
combine all of the CG steps together to form only one symbol
since the same SEB is repeated. This fits our purpose since
similar SEBs will have the same cache configuration. In this
way, our example will have only three states in its DFA. Note
that state merging techniques can be used to merge compatible
states, but for practical cases, the number of states is already
very small after applying our technique.

The inferred DFA (equivalent to a regular expression) will
be used for the rest of the application execution by the RTS
to predict the future of the application. In this formulation,
predicting the future of the application is similar to simple
pattern matching of regular expressions. For example, the
pattern of NAMD which performs FFT for long range force
calculations is similar to the regular expression (a3b)⇤. MILC’s

4We have simplified the definitions and the algorithm for our purpose but in
general, there can be multiple positive and negative samples of the language
to learn from.
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•  Mantevo	
  mini-­‐app	
  suite	
  
– RepresentaMve	
  inputs	
  
– Assume	
  MPI+OpenMP	
  
–  IdenMfy	
  unique	
  SEBs	
  

•  SESC	
  cycle-­‐accurate	
  simulator	
  
– Simulate	
  different	
  configuraMons	
  for	
  each	
  SEB	
  

•  Model	
  cache	
  power/energy	
  using	
  CACTI	
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in parallel for each access (for less latency), while only one
way of the L3 cache is activated for each access, since L3 is
not in the critical path of the processor. Thus, turning off the
ways of the L1 and L2 will save dynamic energy, while it will
only save leakage energy in the L3 cache.

TABLE I. SIMULATED PROCESSOR’S PARAMETERS

Chip 8 Core CMP
Core MIPS32, 4 issue out-of-order processor
Instruction L1 (L1I) 32 KB, 2 way
Data L1 (L1D) 32 KB, 4 way, WT, private.
L2 256 KB, 8 way, WB, private.
L3 16 MB, 16 banks, 16 way, WB, shared
Technology node 32 nm
Frequency 3.4 GHz

In this work, we consider the properties of the application
domains for our selection of the input sizes. For example, in
stencil codes each element represents a point in the physical
domain and the iteration’s computation is linear in the input
size. Consequently, large sizes are more common and practical.
On the other hand, large input sizes are less common in molec-
ular dynamics since the force computation in each iteration is
not linear in the number of atoms and molecules. Table II
presents the input size per processor of each application in
our experiments. These sizes are small compared to weak
scaling runs that fill the node’s main memory, but they are used
for typical strong scaling runs. In addition, input sizes larger
than the LLC usually behave similarly because of common
streaming patterns discussed in Subsection II-B. We study the
effect of input size more extensively in different experiments.

TABLE II. APPLICATION DOMAIN SIZES

Mini-App Input Domain Size per Processor
CloverLeaf 960⇥ 960 grid
CoMD 2744 boxes (including halo)
NPB-FT 128⇥ 128⇥ 32 grid
HPCCG 60⇥ 60⇥ 60 grid
miniFE 50⇥ 50⇥ 50 grid
miniGhost 100⇥ 100⇥ 100 grid
miniMD 6083 atoms (including halo)
miniXyce 602 variables

B. Results

Table III presents the cache configurations that result in
the best energy efficiency, with only slight execution time
penalty (0.5% penalty threshold). As can be seen, in most
cases, half of the first level instruction cache and three quarters
of the first level data caches were turned off for the best
energy efficiency. The reason is that turning off ways of L1
caches can save a lot of energy, since they are the closest to
the processor and have many more accesses. However, naive
shutdown of ways of L1 caches can be detrimental, since they
are critical for performance and increasing their miss rates can
hurt performance significantly. In our simulation results (not
presented here), some configurations with small L1 caches and
not enough capacity in other caches resulted in more than one
order of magnitude slow-down. Thus, the other levels need
to have enough capacity to back up lower level caches, and
configurations should be selected carefully.

The only configuration with multiple L1D ways enabled is
for miniMD. The reason is that the working set (data structures

of atoms) fits in the L1 cache. Because of the high computation
per data element in molecular dynamics programs (discussed
in Section II), the benefit of having them in L1 exceeds the
power saving of turning off its ways.

Filtering Configurations: We try all the configurations
exhaustively since there are only a few SEBs but many
processors in a supercomputer. For small scale (down to one
processor) runs, one could try only the configurations that
are more likely to achieve better performance and energy
efficiency. Table III shows that the set of high performing
configurations is not diverse and only a few configurations
can be the best for different applications. More investigation
at the small scale is left for future work.
TABLE III. BEST CONFIGURATION FOUND WITH LOWEST ENERGY BUT

WITHOUT PERFORMANCE PENALTY. FORMAT: (NUMBER OF CACHE WAYS
ON)/(TOTAL NUMBER OF WAYS).

Mini-App L1D L1I L2 L3
CloverLeaf-cell 1/4 1/2 2/8 16/16
CloverLeaf-mom 1/4 1/2 2/8 16/16
CoMD 1/4 1/2 2/8 8/16
NPB-FT 1/4 2/2 4/8 16/16
HPCCG 1/4 1/2 2/8 16/16
miniFE-cg 1/4 1/2 2/8 16/16
miniFE-diffuse 1/4 1/2 1/8 1/16
miniGhost 1/4 1/2 2/8 16/16
miniMD 2/4 1/2 2/8 1/16
miniXyce 1/4 1/2 4/8 1/16

Figures 5(a) to 5(c) present the execution time penalty and
energy savings of different mini-apps due to reconfiguration,
with different performance penalty thresholds. Note that some
mini-apps have more than one significant kernel (presented
separately, such as miniFE-cg), while others are simple enough
to take the whole iteration as reconfiguration units. From this
figure, it is evident that with negligible change in execution
time (less than 0.5% performance penalty threshold, 0.2%
average actual penalty), very significant cache energy savings
(up to 88%) are possible. On average, about 40% of cache
energy consumption can be saved by just turning off ways of
caches, without a significant performance penalty.

Furthermore, a small sacrifice in performance (less than
5% threshold, 2.4% average actual penalty) can result in more
cache energy savings (about 67% on average). These small
performance differences in the computation may not result
in any performance degradation for many HPC applications
because of inter-node communication. Moreover, minimizing
cache energy without considering performance degradation
results in more savings (about 78% average savings), but it
can result in a very high penalty in some cases (6.4 times
slowdown for miniGhost). This happens for miniGhost because
its data fits in the L3 cache, but this method is trying to turn L3
ways off to save leakage energy. This is clearly a suboptimal
decision from the energy standpoint as well, because other
energy consumption sources, such as extra memory transfers,
have not been considered. One should consider other energy
sources if available for measurement consequently or cap the
performance penalty.

Figures 6(a) to 6(c) illustrate the behavior and effective-
ness of our approach for different problem sizes. Figure 6(a)
illustrates that our approach initially increases the cache size
(mostly L3) to incorporate the working set, which is the most

Format:	
  <ways	
  turned	
  on>/<total	
  number	
  of	
  ways>	
  

Best	
  configuraMon	
  
depends	
  on:	
  	
  
•  ApplicaMon	
  type	
  
•  Input	
  size	
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•  Streaming:	
  predict	
  data	
  and	
  prefetch	
  for	
  
simple	
  memory	
  access	
  paqerns	
  
– Two	
  important	
  parameters:	
  
– Cache	
  size	
  to	
  use	
  
– Prefetch	
  depth	
  

•  Can	
  waste	
  energy	
  and	
  memory	
  bandwidth	
  
– Too	
  deep/small	
  cache	
  evicts	
  useful	
  data	
  
– Prefetch	
  enough	
  data	
  to	
  hide	
  memory	
  latency	
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•  RTS	
  can	
  tune	
  cache	
  size	
  and	
  depth	
  
– Similar	
  to	
  previous	
  discussion	
  

•  Hardware	
  implementaMon:	
  
– Prefetcher	
  has	
  an	
  adder	
  to	
  generate	
  next	
  address	
  
– One	
  input	
  can	
  be	
  controlled	
  by	
  RTS	
  as	
  a	
  system	
  
register	
  

– Does	
  not	
  have	
  overheads	
  of	
  repeMMve	
  prefetch	
  
instrucMons	
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•  Small	
  gains	
  in	
  performance	
  might	
  have	
  high	
  energy	
  cost	
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•  Wrong	
  speculaMve	
  path	
  is	
  accelerated	
  with	
  deeper	
  prefetch	
  
•  Intervenes	
  with	
  useful	
  computaMon	
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•  AutomaMc	
  cache	
  hierarchy	
  reconfiguraMon	
  in	
  
hardware	
  had	
  been	
  explored	
  extensively	
  
–  Survey	
  by	
  Zang	
  and	
  Gordon-­‐Ross	
  
–  Hardware	
  complexity	
  -­‐>	
  energy	
  overhead	
  
–  Hard	
  to	
  predict	
  applicaMon	
  behavior	
  in	
  hardware	
  

•  Small	
  “window”	
  
•  Choosing	
  best	
  configuraMon	
  

•  Compiler	
  directed	
  cache	
  reconfiguraMon	
  (Hu	
  et	
  al.)	
  
–  Compiler’s	
  analysis	
  is	
  usually	
  limited	
  

•  Many	
  assumpMons	
  for	
  footprint	
  analysis	
  
–  Simple	
  affine	
  nested	
  loops	
  
–  Simple	
  array	
  indices	
  (affine	
  funcMons	
  of	
  constants	
  and	
  index	
  variables)	
  

•  Not	
  feasible	
  for	
  real	
  applicaMons	
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•  Caches	
  consume	
  a	
  lot	
  of	
  energy	
  (40%>)	
  
•  AdapMve	
  RTS	
  can	
  predict	
  applicaMon’s	
  future	
  
– Using	
  Formal	
  Language	
  Theory	
  

•  Best	
  cache	
  configuraMon	
  can	
  be	
  found	
  in	
  
parallel	
  (SPMD	
  model)	
  
– 67%	
  of	
  cache	
  energy	
  is	
  saved	
  on	
  average	
  

•  Reconfigurable	
  streaming	
  
–  Improves	
  performance	
  and	
  saves	
  energy	
  
– 30%	
  performance	
  and	
  75%	
  energy	
  in	
  some	
  cases	
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•  Prototype	
  machine	
  (MIT	
  Angstrom?)	
  and	
  
runMme	
  (Charm++	
  PICS)	
  

•  Find	
  best	
  configuraMon	
  in	
  small	
  scale	
  
– When	
  exhausMve	
  search	
  is	
  not	
  possible	
  
– Using	
  common	
  applicaMon	
  paqerns	
  

•  Extend	
  to	
  mobile	
  applicaMons	
  
– Many	
  modern	
  mobile	
  apps	
  have	
  paqerns	
  similar	
  	
  
to	
  HPC!	
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