
Ehsan	 Totoni	
Josep	 Torrellas	

Laxmikant	 V.	 Kale	
	

Charm	 Workshop	
April	 29th,	 2014	

2	
2	

•  Tianhe-‐2	
•  ~34	 PFlop/s	 Linpack	
•  ~18	 MW	 power	
•  Goal:	 ExaFlop/s	 at	
20MW	

•  ~26	 Mmes	 more	
energy	 efficiency	
needed	

Top500.org	 November	 2013	

3	
3	

•  Caches	 consume	 a	 large	 fracMon	 of	
processor’s	 power	
– 40%	 in	 POWER7,	 a]er	 many	 techniques	

•  Ge_ng	 larger	 every	 day	
–  Intel	 Xeon	 E7-‐88702:	 30MB	 of	 SRAM	 L3	
–  IBM	 POWER8:	 96MB	 of	 eDRAM	 L3	

•  Fixed	 design,	 but	 applicaMons	 are	 different	
– E.g.	 potenMally	 no	 locality	 in	 pointer	 chasing	 “Big	
Data”	

4	
4	

•  Scenario:	 NAMD	 on	 Blue	 Waters	
– HIV	 simulaMons,	 only	 64	 million	 atoms	

•  48	 bytes	 atom	 state	 (posiMon	 &	 velocity)	
•  Some	 transient	 data	 (mulMcasts)	
•  Assuming	 400	 bytes/atom,	 25.6	 GB	

–  4000	 Cray-‐XE	 nodes	
•  32	 MB	 of	 L2	 and	 32	 MB	 L3	 each	 -‐>	 256	 GB	 of	 cache!	
•  90%	 of	 capacity	 not	 unused	
•  (there	 is	 nothing	 wrong	 with	 NAMD!)	

–  16	 days	 wall	 clock	 Mme,	 not	 best	 use	 of	 caches..	
Huge	 waste!	

Structure of the HIV capsid

Capped fullerene cone

Pentamers introduce
sharp declinations

Continuously changing
curvature in the
hexagonal lattice

Ganser, B. K. (1999).
 Science, 283, 80–83

Briggs, J. et al. (2006). Structure, 14, 15–20

Highly
schematic
model;
beads are
not
proteins!

5	
5	

•  Turning	 off	 cache	 ways	 to	 save	 energy	
proposed	

•  Two	 main	 issues:	
– PredicMng	 the	 applicaMons	 future	 	
– Finding	 the	 best	 cache	 hierarchy	 configuraMon	 	

•  We	 solve	 both	 on	 HPC	 systems	

6	
6	

•  Many	 processors	 are	 commodity	
– Not	 necessarily	 designed	 for	 HPC	

•  Provisioning	 different	 than	 non-‐HPC	
– No	 mulM-‐programming,	 Mme-‐sharing,	 co-‐locaMon	
– Large,	 long	 jobs	
– High	 Predictability	

7	
7	

•  ProperMes	 of	 algorithms	 in	 common	 HPC	 apps:	
–  ParMcle	 interacMons	 (MiniMD	 and	 CoMD)	

•  Force	 computaMon	 of	 enMMes	
•  Small	 domain,	 high	 temporal	 locality	

–  Stencil	 computaMons	 (CloverLeaf	 and	 MiniGhost)	 	
•  Update	 of	 grid	 points	 with	 stencils	
•  Large	 domain,	 low	 temporal	 locality	

–  Sparse	 Linear	 Algebra	 (HPCCG,	 MiniFE,	 and	 MiniXyce)	 	
•  Update	 of	 grid	 points	 with	 SpMV	
•  O]en	 large	 domain,	 low	 temporal	 locality	

8	
8	

1

3

5

42

6

7

8

0x03…1 0x03…2 0x03…3 0x03…4

0x05…3 0x04…4 0x05…5 0x05…6

0x07…5 0x07…6 0x07…7 0x07…8

9	
9	

•  HPC	 applicaMons	 are	 iteraMve	 	
– Persistence:	 Same	 paqern	 repeats	
– RTS	 can	 monitor	 applicaMon,	 predict	 future	

•  Single	 Program	 MulMple	 Data	 (SPMD)	
– Different	 processors	 doing	 the	 same	 thing	
– RTS	 can	 try	 cache	 configuraMons	 exhausMvely	

•  RTS	 can	 apply	 best	 cache	 configuraMon	
– Monitor,	 re-‐evaluate	 regularly	

10	
10	

•  RTS	 tracks	 SequenMal	 ExecuMon	 Blocks	 (SEBs)	
– ComputaMons	 between	 communicaMon	 calls	

•  	 IdenMfied	 by	 characterisMc	 informaMon	
– CommunicaMon	 calls	 and	 their	 arguments	
– DuraMon	
– Key	 performance	 counters	

•  Usually	 repeated	 in	 every	 iteraMon	

11	
11	

•  Hierarchical	 iteraMon	 structure	

PE	 0	

PE	 3	

PE	 1	

PE	 2	

Overall	 iteraMon	

sub
iter	

12	
12	

•  RTS	 needs	 to	 idenMfy	 iteraMve	 structure	
– Difficult	 in	 most	 general	 sense	

•  Using	 Formal	 Language	 Theory	
– Define	 each	 SEB	 as	 a	 symbol	 of	 an	 alphabet	 Σ	
– An	 iteraMve	 structure	 is	 a	 regular	 language	

•  Easy	 to	 prove	 by	 construcMon	
– Each	 execuMon	 is	 a	 word	

13	
13	

•  In	 profiling,	 RTS	 sees	 a	 stream	 of	 SEBs	 (symbols)	
– Needs	 to	 recognize	 the	 paqern	
–  Learning	 a	 regular	 language	 from	 text	
–  Build	 a	 DeterminisMc	 Finite	 Automaton	 (DFA)	

•  Prefix	 Tree	 Acceptor	 (PTA)	
– A	 state	 for	 each	 prefix	
– Not	 too	 large	 in	 our	 applicaMon	

Our approach in the RTS can be summarized as follows:

1) Determine iterations (and relevant SEBs)
2) Ensure the SEBs are the same across processors
3) Run different configurations on different processors

and find the best in performance and power/energy
efficiency

4) Apply the best configuration to all processors
5) Observe the execution and repeat if behavior changes

Note that we depend on the fact that SEB characteristics are
the same or similar on different processors. This follows from
the Single Program Multiple Data (SPMD) paradigm assumed
in most distributed memory parallel languages, such as MPI.

B. Generalization

Most scientific applications are structured: they can have
multiple phases in each overall iteration, but these phases
are also often iterative, forming a “hierarchical” iteration
structure. For example, Figure 3 depicts different phases of
MILC on four processors. This is a timeline diagram, where
different phases (e.g domain updates with nearest neighbor
communication, and CG solve) are color-coded differently.
Note that the executions of four processors are stacked, but
they appear very similar.

Using Formal Language Theory, the hierarchical iterative
structure of an HPC application can be modeled as a Regular
Language. We define each unique SEB (found by examining
the characteristic information) as a symbol a of an alphabet
⌃. Each application execution might have a different number
of iterations and hence, is a word of the language.

Theorem. A hierarchical iterative pattern is a regular lan-
guage.

Proof by construction: Each execution is a number of
repeated iterations. Therefore, the pattern can be written as a
regular expression of this form: (a0, a1, ..., ad)⇤, where each
ai is a regular expression. The regular expression for each ai
can also be constructed in the same way. In a finite number
of steps, the whole regular expression can be constructed
recursively. Hence, the language is regular, since it has a
regular expression.

The general problem of finding the application’s pattern
(to use for phase change detection) is a pattern recognition
problem. Using our formulation, it can be modeled as a
classical Formal Language Theory problem: learning a regular
language from text [33], [34]. During the application profiling,
we collect a stream of symbols that are from a regular
language, and we need to infer the language.

In the profiling phase, we gather a string of symbols
(Sample S) of the language by monitoring the SEBs. We need
to infer the grammar to build a deterministic finite automaton
(DFA). Recall that a DFA is a tuple (⌃, Q, q�, F,�) where ⌃
is a finite alphabet, Q is a finite set of states, q� is an initial
state (q� 2 Q), F is a set of final states (F ✓ Q), and � is a
transition function (� : Q ⇥ ⌃ ! Q). For example, Figure 3
can be rewritten as a list of symbols: a0a1a2a3...

A simple solution is to use a prefix tree acceptor
(PTA) [35], [34]. A PTA is a tree-like DFA that has all the

Fig. 3. Timeline view of phases of MILC: time is on x axis and four
processors are stacked on y axis. Colors represent different computations.
This figure illustrates the regular iterative pattern of MILC.

q�start qa qab qabc
a b c

Fig. 4. PTA for sample abc

prefixes of the sample as states, and is strongly consistent with
the sample, which means that it only accepts the sample4.
Algorithm 1 demonstrates how a PTA can be built from a
sample. Figure 4 illustrates an example PTA that is built by
this algorithm for a small sample.

Algorithm: Build-PTA
Input: Sample S
Output: DFA A=(⌃, Q, q�, F,�)
F ;;
Q {qu : u 2 PREF (S)};
for qu·a 2 Q do

�(qu, a) qu·a;
end
F F [{qS};

Algorithm 1: Build PTA from sample

Learning from text by a PTA can be challenging since the
number of states can grow large. However, in practice, the
number of SEBs that execute in the profiling stage is small.
Furthermore, the number of DFA states can be reduced easily.
For example, the application might have 1000 relaxation steps
followed by 1000 CG steps in each overall iteration. This
translates to 2001 DFA states. To reduce this number, we
combine all of the CG steps together to form only one symbol
since the same SEB is repeated. This fits our purpose since
similar SEBs will have the same cache configuration. In this
way, our example will have only three states in its DFA. Note
that state merging techniques can be used to merge compatible
states, but for practical cases, the number of states is already
very small after applying our technique.

The inferred DFA (equivalent to a regular expression) will
be used for the rest of the application execution by the RTS
to predict the future of the application. In this formulation,
predicting the future of the application is similar to simple
pattern matching of regular expressions. For example, the
pattern of NAMD which performs FFT for long range force
calculations is similar to the regular expression (a3b)⇤. MILC’s

4We have simplified the definitions and the algorithm for our purpose but in
general, there can be multiple positive and negative samples of the language
to learn from.

14	
14	

•  Mantevo	 mini-‐app	 suite	
– RepresentaMve	 inputs	
– Assume	 MPI+OpenMP	
–  IdenMfy	 unique	 SEBs	

•  SESC	 cycle-‐accurate	 simulator	
– Simulate	 different	 configuraMons	 for	 each	 SEB	

•  Model	 cache	 power/energy	 using	 CACTI	

15	
15	

in parallel for each access (for less latency), while only one
way of the L3 cache is activated for each access, since L3 is
not in the critical path of the processor. Thus, turning off the
ways of the L1 and L2 will save dynamic energy, while it will
only save leakage energy in the L3 cache.

TABLE I. SIMULATED PROCESSOR’S PARAMETERS

Chip 8 Core CMP
Core MIPS32, 4 issue out-of-order processor
Instruction L1 (L1I) 32 KB, 2 way
Data L1 (L1D) 32 KB, 4 way, WT, private.
L2 256 KB, 8 way, WB, private.
L3 16 MB, 16 banks, 16 way, WB, shared
Technology node 32 nm
Frequency 3.4 GHz

In this work, we consider the properties of the application
domains for our selection of the input sizes. For example, in
stencil codes each element represents a point in the physical
domain and the iteration’s computation is linear in the input
size. Consequently, large sizes are more common and practical.
On the other hand, large input sizes are less common in molec-
ular dynamics since the force computation in each iteration is
not linear in the number of atoms and molecules. Table II
presents the input size per processor of each application in
our experiments. These sizes are small compared to weak
scaling runs that fill the node’s main memory, but they are used
for typical strong scaling runs. In addition, input sizes larger
than the LLC usually behave similarly because of common
streaming patterns discussed in Subsection II-B. We study the
effect of input size more extensively in different experiments.

TABLE II. APPLICATION DOMAIN SIZES

Mini-App Input Domain Size per Processor
CloverLeaf 960⇥ 960 grid
CoMD 2744 boxes (including halo)
NPB-FT 128⇥ 128⇥ 32 grid
HPCCG 60⇥ 60⇥ 60 grid
miniFE 50⇥ 50⇥ 50 grid
miniGhost 100⇥ 100⇥ 100 grid
miniMD 6083 atoms (including halo)
miniXyce 602 variables

B. Results

Table III presents the cache configurations that result in
the best energy efficiency, with only slight execution time
penalty (0.5% penalty threshold). As can be seen, in most
cases, half of the first level instruction cache and three quarters
of the first level data caches were turned off for the best
energy efficiency. The reason is that turning off ways of L1
caches can save a lot of energy, since they are the closest to
the processor and have many more accesses. However, naive
shutdown of ways of L1 caches can be detrimental, since they
are critical for performance and increasing their miss rates can
hurt performance significantly. In our simulation results (not
presented here), some configurations with small L1 caches and
not enough capacity in other caches resulted in more than one
order of magnitude slow-down. Thus, the other levels need
to have enough capacity to back up lower level caches, and
configurations should be selected carefully.

The only configuration with multiple L1D ways enabled is
for miniMD. The reason is that the working set (data structures

of atoms) fits in the L1 cache. Because of the high computation
per data element in molecular dynamics programs (discussed
in Section II), the benefit of having them in L1 exceeds the
power saving of turning off its ways.

Filtering Configurations: We try all the configurations
exhaustively since there are only a few SEBs but many
processors in a supercomputer. For small scale (down to one
processor) runs, one could try only the configurations that
are more likely to achieve better performance and energy
efficiency. Table III shows that the set of high performing
configurations is not diverse and only a few configurations
can be the best for different applications. More investigation
at the small scale is left for future work.
TABLE III. BEST CONFIGURATION FOUND WITH LOWEST ENERGY BUT

WITHOUT PERFORMANCE PENALTY. FORMAT: (NUMBER OF CACHE WAYS
ON)/(TOTAL NUMBER OF WAYS).

Mini-App L1D L1I L2 L3
CloverLeaf-cell 1/4 1/2 2/8 16/16
CloverLeaf-mom 1/4 1/2 2/8 16/16
CoMD 1/4 1/2 2/8 8/16
NPB-FT 1/4 2/2 4/8 16/16
HPCCG 1/4 1/2 2/8 16/16
miniFE-cg 1/4 1/2 2/8 16/16
miniFE-diffuse 1/4 1/2 1/8 1/16
miniGhost 1/4 1/2 2/8 16/16
miniMD 2/4 1/2 2/8 1/16
miniXyce 1/4 1/2 4/8 1/16

Figures 5(a) to 5(c) present the execution time penalty and
energy savings of different mini-apps due to reconfiguration,
with different performance penalty thresholds. Note that some
mini-apps have more than one significant kernel (presented
separately, such as miniFE-cg), while others are simple enough
to take the whole iteration as reconfiguration units. From this
figure, it is evident that with negligible change in execution
time (less than 0.5% performance penalty threshold, 0.2%
average actual penalty), very significant cache energy savings
(up to 88%) are possible. On average, about 40% of cache
energy consumption can be saved by just turning off ways of
caches, without a significant performance penalty.

Furthermore, a small sacrifice in performance (less than
5% threshold, 2.4% average actual penalty) can result in more
cache energy savings (about 67% on average). These small
performance differences in the computation may not result
in any performance degradation for many HPC applications
because of inter-node communication. Moreover, minimizing
cache energy without considering performance degradation
results in more savings (about 78% average savings), but it
can result in a very high penalty in some cases (6.4 times
slowdown for miniGhost). This happens for miniGhost because
its data fits in the L3 cache, but this method is trying to turn L3
ways off to save leakage energy. This is clearly a suboptimal
decision from the energy standpoint as well, because other
energy consumption sources, such as extra memory transfers,
have not been considered. One should consider other energy
sources if available for measurement consequently or cap the
performance penalty.

Figures 6(a) to 6(c) illustrate the behavior and effective-
ness of our approach for different problem sizes. Figure 6(a)
illustrates that our approach initially increases the cache size
(mostly L3) to incorporate the working set, which is the most

Format:	 <ways	 turned	 on>/<total	 number	 of	 ways>	

Best	 configuraMon	
depends	 on:	 	
•  ApplicaMon	 type	
•  Input	 size	

16	
16	

 0

 20

 40

 60

 80

 100

CloverLeaf-cell

CloverLeaf-mom

CoMD
NPB-FT

HPCCG
miniFE-cg

miniFE-di�use

miniGhost

miniMD

miniXyce

Di
�e

re
nc

e
fro

m
 d

ef
au

lt
(%

)
Time penalty Cache energy saving

5%	 Performance	 Penalty	 Threshold	

67%	 cache	 energy	 saving	 (28%	 in	 processor)	 on	 average	

17	
17	

 0

 20

 40

 60

 80

 100

10^3
20^3

30^3
50^3

100^3Di
�e

re
nc

e
fro

m
 d

ef
au

lt
(%

)
HPCCG Problem Size

Time penalty Cache energy saving

 1

 2

 4

 8

 16

10^3 20^3 30^3 50^3 100^3

Nu
m

be
r o

f E
na

bl
ed

 C
ac

he
 W

ay
s

HPCCG Problem Size

L3 Size L2 Size L1D Size

AdapMng	 to	 problem	 size	 is	 crucial.	

18	
18	

•  Streaming:	 predict	 data	 and	 prefetch	 for	
simple	 memory	 access	 paqerns	
– Two	 important	 parameters:	
– Cache	 size	 to	 use	
– Prefetch	 depth	

•  Can	 waste	 energy	 and	 memory	 bandwidth	
– Too	 deep/small	 cache	 evicts	 useful	 data	
– Prefetch	 enough	 data	 to	 hide	 memory	 latency	

19	
19	

•  RTS	 can	 tune	 cache	 size	 and	 depth	
– Similar	 to	 previous	 discussion	

•  Hardware	 implementaMon:	
– Prefetcher	 has	 an	 adder	 to	 generate	 next	 address	
– One	 input	 can	 be	 controlled	 by	 RTS	 as	 a	 system	
register	

– Does	 not	 have	 overheads	 of	 repeMMve	 prefetch	
instrucMons	

20	
20	

 0.1

 0.12

 0.14

 0.16

 0.18

0 2 4 8 16 32 64 128

H
PC

C
G

 E
xe

cu
tio

n
Ti

m
e

(s
)

Prefetch Depth

1 L3 way
2 L3 ways

4 L3 ways
8 L3 ways

16 L3 ways

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

2 4 8 16 32 64 128

R
el

at
iv

e
En

er
gy

 C
on

su
m

pt
io

n

Prefetch Depth

1 L3 way
2 L3 ways

4 L3 ways
8 L3 ways

16 L3 ways

•  Small	 gains	 in	 performance	 might	 have	 high	 energy	 cost	

21	
21	

 0.001

 0.01

 0.1

 1

2 4 8 16 32 64 128

M
is

s
ra

te
 o

f L
3

ca
ch

e

Prefetch Depth

1 L3 way
2 L3 ways

4 L3 ways
8 L3 ways

16 L3 ways

 1

 1.02

 1.04

2 4 8 16 32 64 128

In
st

ru
ct

io
ns

 Is
su

ed

Prefetch Depth

1 L3 way
2 L3 ways

4 L3 ways
8 L3 ways

16 L3 ways

•  Wrong	 speculaMve	 path	 is	 accelerated	 with	 deeper	 prefetch	
•  Intervenes	 with	 useful	 computaMon	

22	
22	

•  AutomaMc	 cache	 hierarchy	 reconfiguraMon	 in	
hardware	 had	 been	 explored	 extensively	
–  Survey	 by	 Zang	 and	 Gordon-‐Ross	
–  Hardware	 complexity	 -‐>	 energy	 overhead	
–  Hard	 to	 predict	 applicaMon	 behavior	 in	 hardware	

•  Small	 “window”	
•  Choosing	 best	 configuraMon	

•  Compiler	 directed	 cache	 reconfiguraMon	 (Hu	 et	 al.)	
–  Compiler’s	 analysis	 is	 usually	 limited	

•  Many	 assumpMons	 for	 footprint	 analysis	
–  Simple	 affine	 nested	 loops	
–  Simple	 array	 indices	 (affine	 funcMons	 of	 constants	 and	 index	 variables)	

•  Not	 feasible	 for	 real	 applicaMons	

23	
23	

•  Caches	 consume	 a	 lot	 of	 energy	 (40%>)	
•  AdapMve	 RTS	 can	 predict	 applicaMon’s	 future	
– Using	 Formal	 Language	 Theory	

•  Best	 cache	 configuraMon	 can	 be	 found	 in	
parallel	 (SPMD	 model)	
– 67%	 of	 cache	 energy	 is	 saved	 on	 average	

•  Reconfigurable	 streaming	
–  Improves	 performance	 and	 saves	 energy	
– 30%	 performance	 and	 75%	 energy	 in	 some	 cases	

24	
24	

•  Prototype	 machine	 (MIT	 Angstrom?)	 and	
runMme	 (Charm++	 PICS)	

•  Find	 best	 configuraMon	 in	 small	 scale	
– When	 exhausMve	 search	 is	 not	 possible	
– Using	 common	 applicaMon	 paqerns	

•  Extend	 to	 mobile	 applicaMons	
– Many	 modern	 mobile	 apps	 have	 paqerns	 similar	 	
to	 HPC!	

Ehsan	 Totoni	
Josep	 Torrellas	

Laxmikant	 V.	 Kale	
	

Charm	 Workshop	
April	 29th,	 2014	

