ChaNGa

CHArm Nbody GrAvity

Thomas Quinn Graeme Lufkin Joachim Stadel James Wadsley Greg Stinson

Funding: NSF NASA

Laxmikant Kale Filippo Gioachin **Pritish Jetley** Celso Mendes Amit Sharma Lukasz Wesolowski Gengbin Zheng Edgar Solomonik Harshitha Menon **Orion Lawlor**

Outline

- Overview of computational cosmology
- Specific Challenges for Blue Waters
- ChaNGa design
- Recent scaling results
- Recent science results
- Future

History of the Universe

Cosmology at 13.6 Gigayears

... is not so simple

Fundamental Problem: Dark Matter and Energy: What is it?

- Not baryons
- Simulations show: not known neutrinos
- Candidates:
 - Sterile Neutrinos
 - Axions
 - Lightest SUSY Particle (LSP)

Computational Cosmology

- CMB has fluctuations of 1e-5
- Galaxies are overdense by 1e7
- It happens (mostly) through Gravitational Collapse
- Making testable predictions from a cosmological hypothesis requires
 - Non-linear, dynamic calculation
 - e.g. Computer simulation

Substructure down to 100 pc

Stadel et al, 2009

Computational Challenges

- Large spacial dynamic range: > 100 Mpc to < 1 kpc
 - Hierarchical, adaptive gravity solver is needed
- Large temporal dynamic range: 10 Gyr to < 1 Myr
 - Multiple timestep algorithm is needed
- Gravity is a long range force
 - Hierarchical information needs to go across
 processor domains

Light vs. Matter

Smooth Particle Hydrodynamics

- Making testable predictions needs Gastrophysics
 - High Mach number
 - Large density contrasts
- Gridless, Lagrangian method
- Galilean invariant
- Monte-Carlo Method for solving Navier-Stokes equation.
- Natural extension of particle method for gravity.

Star Formation/Feedback

Stinson et al 2006

Galaxies simulated to the present

- Reproduces:
- * Light profile
- * Mass profile
- * Star formation
- * Angular momentum

The Hubble Ultra Deep Field

High Redshift Galaxies

- Galaxies seen by Hubble 12 Gyr ago.
- How do they relate to the Milky Way?
- What is their formation history?
- 300M core-hours on Bluewaters

Cosmo25

- 80 Mly 10 Mly 50,000 ly
- \cdot 2 billion particles
- · (25 Mpc)^3
- \cdot Forces ~ 350pc
- · SPH ~ 40 pc
- $\cdot\,$ 100s of galaxies
- \cdot 5 TB dataset

Simulations

	First Stage	Near Future
	Vulcan	Enterprise
Timeline	February 2014	Summer 2014
Size	(25 Mpc) ³	(25 Mpc) ³
Nparticles	2 billion	25 billion
Duration in z	100-4	100-0
Force Resolution	350 pc	175 pc
Morphologies	5e10 M _{tot} (1e9 M*)	5е9 _{мtot}
Size	5 TB	500 TB
Extra Physics		Black hole feedback

H2 regulated star formation

ChaNGa Features

- Tree-based gravity solver
- High order multipole expansion
- Periodic boundaries (if needed)
- Individual multiple timesteps
- Dynamic load balancing with choice of strategies
- Checkpointing (via migration to disk)
- Visualization

Latency hiding strategies

- Multiple "treepieces"/core (over decomposition)
- Division into multiple work units (all concurrently)
 - Off processor gravity treewalk
 - SPH treewalk
 - Local gravity treewalk
 - Ewald summation
- Method prioritization
 - Data requests get high priority

Overall Algorithm

Overlap of Phases

04/30/14

Gravity Hydrodynamics

Scaling to .5M cores

Optimizations for Large Core Count

- Domain Decomposition
 - Reuse previous domain information
 - Only re-decompose when necessary
 - Optimize sort
 - Quiescence detection for particle migration
- Hierarchical Load Balancing
- Treebuilding and approximate remote node location

Clustered/Multistepping Challenges

- Load/particle imbalance
- Communication imbalance
- Fixed costs:
 - Domain Decomposition
 - Load balancing
 - Tree build

Load Variance

ORB Load Balancing

Load distributions

Intra-node work balancing

	63,180,000	63,380,000	68,580,000	68,780,000	68,980,000	Time In Microseconds 64,180,000	64,380,000	64,580,000	64,780,000	64,980,000	65,180,000
											1
		I I									
a de la composición de		1									1
M in ii	i i	-i									i -
Linner		1									
			1								
- L DDDD and											-
											1
AL home											
-1											

62,518,000	62,558,000	62,598,000	62,638,000	62,678,000	Time In Microseconds 62,718,000	62,758,000	62,798,000	62,838,000	62,878,000 62,918,000
						****	·		
							· · · · ·		
									I —
									—
							1		
									I

Communication-Load Imbalance

Replicating Data to Balance Load

Multistep speedups

Multistep speedups

Clusters of Galaxies

- Largest bound objects in the Universe
- Used to study evolution of Dark Energy
- Need 1 kpc resolution in 600 Mpc volume

John Ruan, et al 2013

Dwarf Galaxies and the Milky Way Disk

Purcell et al, Nature 2011

Future

- More Physics
 - Massive Black Holes
 - Radiative transfer
 - Self-Interacting DM
 - Reuse of legacy code
- Better gravity algorithms
 - Fast Multipole Method
 - Heterogeneous machines
- Other Astrophysical problems
 - Planet formation/Planetary Rings

Galactic structure in the local Universe: What's needed

- 1 Million particles/galaxy for proper morphology/heavy element production
- 25 Mpc volume
- 800 M core-hours
- Necessary for:
 - Comparing with Hubble Space Telescope surveys of the local Universe
 - Interpreting HST images of high redshift galaxies

Large Scale Structure: What's needed

- 700 Megaparsec volume for "fair sample" of the Universe
- 18 trillion core-hours (~ exaflop year)
- Necessary for:
 - Interpreting future surveys (LSST)
 - Relating Cosmic Microwave Background to galaxy surveys

Summary

- Cosmological simulations provide a challenges to parallel implementations
 - Non-local data dependencies
 - Hierarchical in space and time
- ChaNGa has been successful in addressing this challenges using Charm++ features
 - Computation/Communication overlap
 - Message priorities
 - New load balancers