
Load Balancing

Epidemic Algorithm for Load Balancing

Harshitha Menon, Laxmikant Kalé

15th April

1 / 25

Load Balancing

Outline

1 Introduction
Motivation
Background
Load Balancing Strategies

2 Distributed Load Balancing
Information Propagation
Load Transfer

3 Evaluation

4 Conclusion

2 / 25

Load Balancing

Introduction

Outline

1 Introduction
Motivation
Background
Load Balancing Strategies

2 Distributed Load Balancing
Information Propagation
Load Transfer

3 Evaluation

4 Conclusion

3 / 25

Load Balancing

Introduction

Motivation

Motivation

Load imbalance in parallel applications

Performance is limited by most overloaded processor
Leads to drop in system utilization
Hampers scalability of the application
The chance that one processor is severely overloaded gets
higher as no of processors increases
For some applications computation load varies over time

4 / 25

Load Balancing

Introduction

Background

Dynamic Load Balancing Framework in Charm++

Application is composed of large number of migratable units

Load balancing strategy is invoked periodically

Based on principle of persistence

Instruments the application tasks at fine-grained level

When the load balancing is invoked

Gathers the statistics based on the strategy (centralized or
hierarchical)
Executes load balancing strategy
Migrates objects based on new mapping

5 / 25

Load Balancing

Introduction

Background

Dynamic Load Balancing Framework in Charm++

Application is composed of large number of migratable units

Load balancing strategy is invoked periodically

Based on principle of persistence

Instruments the application tasks at fine-grained level

When the load balancing is invoked

Gathers the statistics based on the strategy (centralized or
hierarchical)
Executes load balancing strategy
Migrates objects based on new mapping

5 / 25

Load Balancing

Introduction

Background

Dynamic Load Balancing Framework in Charm++

Application is composed of large number of migratable units

Load balancing strategy is invoked periodically

Based on principle of persistence

Instruments the application tasks at fine-grained level

When the load balancing is invoked

Gathers the statistics based on the strategy (centralized or
hierarchical)
Executes load balancing strategy
Migrates objects based on new mapping

5 / 25

Load Balancing

Introduction

Background

Dynamic Load Balancing Framework in Charm++

Application is composed of large number of migratable units

Load balancing strategy is invoked periodically

Based on principle of persistence

Instruments the application tasks at fine-grained level

When the load balancing is invoked

Gathers the statistics based on the strategy (centralized or
hierarchical)
Executes load balancing strategy
Migrates objects based on new mapping

5 / 25

Load Balancing

Introduction

Background

Dynamic Load Balancing Framework in Charm++

Application is composed of large number of migratable units

Load balancing strategy is invoked periodically

Based on principle of persistence

Instruments the application tasks at fine-grained level

When the load balancing is invoked

Gathers the statistics based on the strategy (centralized or
hierarchical)
Executes load balancing strategy
Migrates objects based on new mapping

5 / 25

Load Balancing

Introduction

Load Balancing Strategies

Load Balancing Strategies

Centralized Strategies

Has global view of the system (good quality load balancing)
Clear bottleneck beyond few thousand processors

Distributed Strategies

Processors make autonomous decisions based on local view
(neighborhood)
Scalable
Yield poor load balance due to limited information

Hierarchical Load balancer

Subgroup of processors collect information at the root and
receive aggregated information at higher levels
Scalable and good quality
May suffer from excessive data collection at lowest levels

6 / 25

Load Balancing

Distributed Load Balancing

Outline

1 Introduction
Motivation
Background
Load Balancing Strategies

2 Distributed Load Balancing
Information Propagation
Load Transfer

3 Evaluation

4 Conclusion

7 / 25

Load Balancing

Distributed Load Balancing

Grapevine - Proposed Distributed Load Balancer

Key Features

Fully distributed scheme

Use partial information of the global state of the system

Propabilistic transfer of load

Scalable and good quality

8 / 25

Load Balancing

Distributed Load Balancing

Grapevine - Proposed Distributed Load Balancer

Key Features

Fully distributed scheme

Use partial information of the global state of the system

Propabilistic transfer of load

Scalable and good quality

8 / 25

Load Balancing

Distributed Load Balancing

Grapevine - Proposed Distributed Load Balancer

Key Features

Fully distributed scheme

Use partial information of the global state of the system

Propabilistic transfer of load

Scalable and good quality

8 / 25

Load Balancing

Distributed Load Balancing

Grapevine - Proposed Distributed Load Balancer

Key Features

Fully distributed scheme

Use partial information of the global state of the system

Propabilistic transfer of load

Scalable and good quality

8 / 25

Load Balancing

Distributed Load Balancing

Grapevine - Proposed Distributed Load Balancer

Two Phases

Information propagation

Load transfer

9 / 25

Load Balancing

Distributed Load Balancing

Grapevine - Proposed Distributed Load Balancer

Two Phases

Information propagation

Load transfer

9 / 25

Load Balancing

Distributed Load Balancing

Grapevine - Proposed Distributed Load Balancer

Two Phases

Information propagation

Load transfer

9 / 25

Load Balancing

Distributed Load Balancing

Information Propagation

Information Propagation

Based on gossip protocol

Each underloaded processor starts the
gossip

Randomly sample peers and send its
load information

On receiving load information,

Combine the information with
already known
Forward it to random peers

No explicit synchronization

10 / 25

Load Balancing

Distributed Load Balancing

Information Propagation

Information Propagation

Based on gossip protocol

Each underloaded processor starts the
gossip

Randomly sample peers and send its
load information

On receiving load information,

Combine the information with
already known
Forward it to random peers

No explicit synchronization

10 / 25

Load Balancing

Distributed Load Balancing

Information Propagation

Information Propagation

Based on gossip protocol

Each underloaded processor starts the
gossip

Randomly sample peers and send its
load information

On receiving load information,

Combine the information with
already known
Forward it to random peers

No explicit synchronization

10 / 25

Load Balancing

Distributed Load Balancing

Information Propagation

Information Propagation

Based on gossip protocol

Each underloaded processor starts the
gossip

Randomly sample peers and send its
load information

On receiving load information,

Combine the information with
already known
Forward it to random peers

No explicit synchronization

10 / 25

Load Balancing

Distributed Load Balancing

Information Propagation

Information Propagation

Number of rounds taken to propagate a single update

r = O(logf n)

 0

 4

 8

 12

 16

 20

 0 4096 8192 12288 16384

R
ou

nd
s

System Size (n)

f=2
f=3
f=4

Expected number of rounds taken to spread information

11 / 25

Load Balancing

Distributed Load Balancing

Information Propagation

Information Propagation

 8

 10

 12

 14

 16

 18

 0 4096 8192 12288 16384

R
ou

nd
s

System Size (n)

Naive
Informed

Expected number of rounds taken to
spread information

Two Flavors

Naive

Random selection

Informed

Biased selection
Incorporate current knowledge

12 / 25

Load Balancing

Distributed Load Balancing

Load Transfer

Load Transfer

Probabilistic transfer of load

Naive transfer: Select processors uniformly at random
Informed transfer: Select processors based on their load

pi =
1

Z
×
(

1− Li
Lavg

)
pi probability assigned to ith processor
Li load of ith processor
Lavg average load of the system
Z normalization constant

13 / 25

Load Balancing

Distributed Load Balancing

Load Transfer

Load Transfer

Naive Transfer

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000

L
o
a
d

Underloaded Processors

 0

 0.00012

 0.00024

 0.00036

 0.00048

 0 1000 2000 3000 4000

P
ro

b
a
b
il

it
y

Underloaded Processors

 0

 5

 10

 15

 20

 0 1000 2000 3000 4000

R
e
q
u
e
s
ts

Underloaded Processors

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000

L
o
a
d

Underloaded Processors

Informed Transfer

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000

L
o
a
d

Underloaded Processors

 0

 0.0004

 0.0008

 0.0012

 0 1000 2000 3000 4000

P
ro

b
a
b
il

it
y

Underloaded Processors

 0

 5

 10

 15

 20

 0 1000 2000 3000 4000

R
e
q
u
e
s
ts

Underloaded Processors

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000

L
o
a
d

Underloaded Processors

(a) Initial load (b) Probabilities assigned (c) Work units transferred (d) Final load.

14 / 25

Load Balancing

Distributed Load Balancing

Load Transfer

Quality of Load Balancing

 30

 40

 50

 60

 70

 1 4 16 64 256 1024 4096
 0

 0.25

 0.5

 0.75

 1

M
ax

 L
oa

d

Im
ba

la
nc

e

Underloaded Processor Info

Max Load
Imbalance

Evaluation of partial information

Quality is evaluation based on
Imbalance given by

I =
Lmax

Lavg
− 1

15 / 25

Load Balancing

Evaluation

Outline

1 Introduction
Motivation
Background
Load Balancing Strategies

2 Distributed Load Balancing
Information Propagation
Load Transfer

3 Evaluation

4 Conclusion

16 / 25

Load Balancing

Evaluation

Evaluation

Applications

LeanMD
AMR

Applications were run on IBM BG/Q Vesta

Comparison with

GreedyLB
RefineLB
AmrLB

DiffusionLB

HybridLB

Metrics to evaluate

Execution time per step excluding LB time
Load balancing overhead
Total application time

17 / 25

Load Balancing

Evaluation

Evaluation with LeanMD

Time per step

Quality of our strategy is
equivalent to centralized

 10

 100

 1000

2048 4096 8192 16384 32768

Ti
m

e
pe

r S
te

p
(m

s)

Number of Processes

No LB

Diff LB

Greedy LB

Refine LB

Hybrid LB

Gv LB

18 / 25

Load Balancing

Evaluation

Evaluation with LeanMD

Load Balancing overhead

Centralized have high
overhead

Distributed schemes have
low overhead

Strategies
Number of Processes

2048 4096 8192 16384 32768
HybridLB - 1.35 0.7 0.368 0.2375
GreedyLB 8.62 8.9 10.33 11.2 23.4
RefineLB 55 50 27 34 121

DiffLB 0.039 0.043 0.040 0.043 0.040
GvLB 0.013 0.016 0.023 0.030 0.045

Load balancing cost (in seconds) of various
strategies for LeanMD

19 / 25

Load Balancing

Evaluation

Evaluation LeanMD

Total application time

Using centralized
strategies overhead
exceeds benefit

Grapevine gives the best
performance

Strategies
Number of Processes

2048 4096 8192 16384 32768
NoLB 201 102 51 25 13

HybridLB - 72 37 20 12
GreedyLB 201 148 133 127 243
RefineLB 675 567 306 362 1227

DiffLB 140 72 37 22 13
GvLB 119 64 32 17 10

Total application time (in seconds) for LeanMD on
BG/Q

20 / 25

Load Balancing

Evaluation

Evaluation with AMR

Time per step

Quality of our strategy is
equivalent to centralized

 10

 100

 1000

1024 2048 4096 8192 16384

Ti
m

e
pe

r S
te

p
(m

s)

Number of Processes

No LB

Diff LB

Amr LB

Refine LB

Hybrid LB

Gv LB

21 / 25

Load Balancing

Evaluation

Evaluation with AMR

Load Balancing overhead

Centralized have high
overhead

Distributed schemes have
low overhead

Strategies
Number of Processes

1024 2048 4096 8192 16384
HybridLB - - 8.29 7.2 2.6
AmrLB 1.09 1.37 2.00 3.30 4.40

RefineLB 12 21 23 33 76
DiffLB 0.015 0.014 0.014 0.014 0.015
GvLB 0.011 0.011 0.015 0.021 0.030

Load balancing cost (in seconds) of various
strategies for AMR.

22 / 25

Load Balancing

Evaluation

Evaluation with AMR

Total application time

Load balancing overhead
exceeds benefit for most
strategies

Diffusion based load
balancer gives marginal
benefit

Grapevine gives the best
performance

Strategies
Number of Processes

1024 2048 4096 8192 16384
NoLB 137 75 43 27 20

HybridLB - - 93 69 39
AmrLB 136 69 45 49 47

RefineLB 199 217 209 255 546
DiffLB 135 68 38 25 18
GvLB 123 59 30 21 14

Total application time (in seconds) for AMR on
BG/Q.

23 / 25

Load Balancing

Conclusion

Outline

1 Introduction
Motivation
Background
Load Balancing Strategies

2 Distributed Load Balancing
Information Propagation
Load Transfer

3 Evaluation

4 Conclusion

24 / 25

Load Balancing

Conclusion

Conclusion

Simple strategy

Scales well

Can be tuned to optimize for either cost or quality

25 / 25

	Introduction
	Motivation
	Background
	Load Balancing Strategies

	Distributed Load Balancing
	Information Propagation
	Load Transfer

	Evaluation
	Conclusion

