Toward Runtime Power Management of Exascale Networks by On/Off Control of Links

Ehsan Totoni University of Illinois-Urbana Champaign, PPL Charm++ Workshop, April 16 2013

Power challenge

- Power is a major challenge
- Blue Waters consuming up to 13 MW
 - Enough to electrify a small town
 - Power and cooling infrastructure
- ✤ Up to 30% of power in network
 - Projected for future by Peter Kogge
 - Saving 25% power in current Cray XT system by turning down network
 - ✤ Work from Sandia

Network link power

- Network is not "energy proportional"
 - Consumption is not related to utilization
 - Near peak most of the time
 - Unlike processor
- ✤ Recent study:
 - Work from Google in ISCA'10
 - ✤ 50% of power in network of non-HPC data center
 - When CPU's underutilized
- ✤ Up to 65% of network's power is in links

Exascale networks

✤ Dragonfly

✤ IBM PERCS in Power 775 machines

Cray Aries network in XC30 "Cascade"

DOE Exascale Report

- ✤ High dimensional Tori
 - ✤ 5D Torus in IBM Blue Gen/Q
 - 6D Torus in K Computer
- ✤ Higher radix -> a lot of links!

Communication patterns

- Applications' communication patterns are different
- Network topology designed for a wide range of applications

Fraction of links ever used

Nearest neighbor usage

More expensive links

Nearest neighbor

Solution to power waste

Many of the links are never used

- ✤ For common applications
- Are networks over-built? Maybe
 - ✤ FFTs are crucial
 - But processors are also overbuilt
- Let's make them "energy proportional"
 - Consume according to workload
 - Just like processors
- Turn off unused links
 - Commercial network exists (Motorola)

Runtime system solution

✤ Hardware can cause delays

- ✤ According to related work
- Not enough application knowledge
 - ✤ Small window size
- Compiler does not have enough info
 - Input dependent program flow
- Application does not know hardware
 - Significant programming burden to expose
- Runtime system is the best
 - mediates all communication
 - ✤ knows the application
 - ✤ knows the hardware

Feasibility

- Not probably available for your cluster downstairs
 - Need to convince hardware vendors
 - Runtime hints to hardware, small delay penalty if wrong
- Multiple jobs: interference
 - Isolated allocations are becoming common
 - ✤ Blue Genes allocate cubes already
 - Capability machines are for big jobs

Software design choices

 Random mapping and indirect routing have similar performance but different link usages

Power model

- ✤ We saw many links that are never used
- Used links are not used all the time
 - ✤ For only a fraction of iteration time
 - Compute-communicate paradigm
- ✤ A power model for "network capacity utilization"
 - * "Average" utilization of all the links
 - Assume that links are turned magically on and off
 - ✤ At the exact right time
 - No switching overhead
 - * Example: network used one tenth of iteration time

Model results

Scheduling on/offs

- Runtime roughly knows when a message will arrive
 - ✤ For common iterative HPC applications
 - Low noise systems (e.g. IBM Blue Genes)
- There is a delay for switching the link
 - + $10 \,\mu$ s for current implementation
 - Much smaller than iteration time
 - Runtime can be conservative
 - Schedule "on"s earlier
 - Similar to having more switching delay

Delay overhead

Ehsan Toton

Results summary

18

Questions?

SUSAL UNIT SUST

Are you convinced?

Ehsan Totoni