Energy Profile of Fault Tolerance Protocols for HPC Systems

Esteban Meneses, Osman Sarood and Sanjay Kalé

Parallel Programming Laboratory University of Illinois at Urbana-Champaign

Charm++ Workshop, 2013

Exascale

Power & Energy

- Power management (20MW budget)
- Administrative considerations $(1MW \rightarrow \$1M/year)$
- System codesign (architectural features)

Fault Tolerance

- Size of the machine (200,000 sockets → MTBF)
- Types of failures (memory, accelerator, network)
- Different strategies

Energy Efficiency of Fault Tolerance Protocols

- 2 Experimental Setup
- 3 Experimental Results
- Analytical Model
- 5 Discussion

Fault Tolerance Protocols

• Checkpoint/Restart

- State is saved periodically
- Coordinated global checkpoint
- Checkpoint stored locally
- $\bullet \ \ {\sf Failure} \to {\sf global \ rollback}$

Message-Logging

- Messages are stored at sender
- Non-determinism logged
- Determinants in causal path
- Failure \rightarrow local rollback

Parallel Recovery

- Tasks are migratable
- Failure \rightarrow recovery in parallel

Caveat

- Many variants of checkpoint/restart
- Several message-logging protocols
- Hybrid schemes

Optimum Checkpoint Period

Daly's modified model:

$$\tau = \sqrt{2\delta(M+R)} - \delta$$

Questions

- Optimum au for message-logging and parallel recovery?
- Optimum τ to minimize energy?
- Execution time vs energy consumption?

Charm++ Runtime System

- Migratable Objects Model
- Asynchronous Method Invocation
- Adaptive MPI \rightarrow each rank becomes an object
- Application-level checkpoint

- One process per *logical* node
- Failure injection: kill -9 pid
- Failure detection → automatic restart on replacement node
- Fault tolerance protocols at object-level

General Features

- 40 single-socket nodes
- Each node has a four-core Intel Xeon and 4GB of main memory
- Gigabit ethernet switch

• Power Measuring

- Liebert power distribution unit (PDU)
- Power measurement per-node
- 1-second interval frequency

Checkpoint/Restart

Test program

- 7-point stencil
- Nearest neighbor in 3D
- Barrier after each step
- Virtualization ratio = 32
- 200 steps (checkpoints at 50 and 150)
- Local disk checkpoint

Energy Consumption in Recovery

Test programs

- NAS Parallel Benchmarks
- Block Tridiagonal (BT) and Scalar Pentadiagonal (SP)
- Virtualization ratio = 4

	Jacobi3D	NPB-BT	NPB-SP
Language	Charm++	MPI	MPI
Problem size	1024 ³	class C	class C
Number of cores	128	100	100
Virtualization ratio	32	4	4
Recovery parallelism	8	4	4
Message-logging overhead	1.0%	3.6%	4.1%
Max power (C)	106	102	95
Max power (M)	106	102	96

Message-logging does NOT increase power draw

Execution Time and Energy Model

_

Parameter	Description	Value
W	Time to solution with V	24 h
М	Mean-time-to-interrupt of the system	-
δ	Checkpoint time	180 s
au	Optimum checkpoint period	-
R	Restart time	30 s
Т	Total execution time	-
E	Total energy consumption	-
μ	Message-logging slowdown	1.05
Р	Available parallelism during recovery	8
ϕ	Message-logging recovery speedup	1.2
σ	Parallel recovery speedup	Р
λ	Parallel recovery slowdown	$\frac{P+1}{P}$
Н	Max power of each socket	100 W
L	Base power of each socket	40 W

$$T = T_{Solve} + T_{Checkpoint} + T_{Recover} + T_{Restart}$$

Execution Time (Checkpoint/Restart)

$$T = W + \left(\frac{W}{\tau} - 1\right)\delta + \frac{T}{M}\left(\frac{\tau + \delta}{2}\right) + \frac{T}{M}R$$

Execution Time (Parallel Recovery)

$$T = W\mu + \left(\frac{W\mu}{\tau} - 1\right)\delta + \frac{T}{M}\left(\frac{\tau}{\tau+\delta}\left(\frac{\tau}{2\sigma} + \frac{\tau}{2}(\lambda-1)\right) + \frac{\delta}{\tau+\delta}\left(\frac{\tau}{\sigma} + \frac{\delta}{2}\right)\right) + \frac{T}{M}R$$

$$E = E_{Solve} + E_{Checkpoint} + E_{Recover} + E_{Restart}$$

Energy (Checkpoint/Restart)

$$E = WSH + \left(\frac{W}{\tau} - 1\right)\delta SL + \frac{T}{M}\left(\frac{\tau}{\tau + \delta} \cdot \frac{\tau}{2}SH + \frac{\delta}{\tau + \delta}\left(\tau SH + \frac{\delta}{2}SL\right)\right) + \frac{T}{M}RSL$$

Energy (Parallel Recovery)

$$\begin{split} E &= W \mu SH + \left(\frac{W \mu}{\tau} - 1\right) \delta SL + \\ \frac{T}{M} \left(\frac{\tau}{\tau + \delta} \left(\frac{\tau}{2\sigma} \left(PH + (S - P)L\right) + \frac{\tau}{2}(\lambda - 1)SH\right) + \frac{\delta}{\tau + \delta} \left(\frac{\tau}{\sigma} \left(PH + (S - P)L\right) + \frac{\delta}{2}SL\right)\right) + \frac{T}{M}RSL \end{split}$$

Time-optimum τ

Energy-optimum τ

Relative Execution Time

Parallel recovery executes twice as fast

Relative Energy Consumption

Message-logging consumes 30% less energy

Parallel recovery checkpoints less often than MTBF

• Trend in ratio of base to maximum power

	Release	Max	Base	Base/Max
Processor	Date	Power	Power	Ratio
Intel Xeon (E5520)	Q1,09	125	60	0.48
Intel Nehalem (i7 860)	Q3,09	151	52	0.34
Intel Sandy Bridge (i7 2600)	Q1,11	101	21	0.21

• Migratability and over-decomposition in scientific applications

- "Minimize execution time \implies minimize energy" (not true)
 - Increase checkpoint frequency
 - Recovery is more energy-efficient with message logging
- Energy overhead of message-logging
 - It does not increase power draw
 - It increases energy consumption on the forward path
- Parallel recovery leverages message-logging
 - It provides the minimum execution time (users happy)
 - It offers the minimum energy consumed (administrators happy)
 - The model predicts more than **50%** reduction in execution time and more than **50%** reduction in energy consumed at extreme scale

Particle-simulation applications:

Molecular Dynamics

Quantum Chemistry OpenAtom

- Enhancements to analytical model:
 - Different failure distributions: Weibull, log-normal
 - No upper bound for checkpoint period
- Energy-aware fault tolerance protocols

- HPC Colony II Project. This work is partially supported by the US Department of Energy under grant DOE DE-SC0001845 and by a machine allocation on XSEDE under award ASC050039N.
- **Prof. Tarek F. Abdelzaher**. The experimental results of this work come from the *Energy Cluster* in the University of Illinois at Urbana-Champaign.

Thank you!

Annual Workshop on Charm++ and Applications

Progress Diagram for Energy Efficient Fault Tolerance

Effect of Higher Parallelism During Recovery

Effect of Failure Rate per Socket

Simulation Results

