
Charm++
Interoperability

Nikhil Jain
Charm Workshop - 2013

1

1Monday, April 15, 13

Motivation

Charm++ RTS is powerful - message driven, optimized communication
layer, load balancing, fault tolerance, power management, partitioning.

But legacy codes are huge - rewriting them to use Charm++ may be
significant work.

Can one use Charm++ without code changes or partially to

Get concrete evidence of performance benefits for an application.

Improve performance of a few kernels.

Chunk by chunk transition to Charm++.

2

2Monday, April 15, 13

Proposed Paths

For OpenMP

Charm++ is not a new language - direct use of existing code.

For MPI applications

Use Adaptive MPI.

Interoperate Charm++ with MPI.

Others - we implement front-end APIs as need arise.

3

3Monday, April 15, 13

Approach 1 - Adaptive MPI

Charm++’s implementation of MPI

with useful additions.

Over-decomposition infused by treating each MPI rank as a virtual
process (VP) that executes in its own user-level thread.

Each core hosts multiple VPs that are treated as chares of a chare array
with scheduling controlled by Charm++ RTS.

4

4Monday, April 15, 13

AMPI: User and System View

5

5Monday, April 15, 13

AMPI: Augmentations

Additional functions-

MPI_Migrate - perform load balancing.

MPI_Checkpoint - checkpoint to disk.

MPI_MemCheckpoint - checkpoint to memory.

Non-blocking collectives - also in MPI-3 standard.

Isomalloc - automated tracking of user data for migration/checkpointing.

Swapglobals - automated handling if global data exists.

6

6Monday, April 15, 13

AMPI: Applications

Our aim is to enable execution of any MPI code as AMPI

Some Examples:

BRAMS - Brazilian	 Weather	 code	 based	 on	 RAMS

ISAM	 -‐	 Integrated	 Science	 Assessment	 Model	 for	 assessment	 of	
climate	 change

NAS	 Parallel	 Benchmarks

Mantevo	 Benchmarks

Lulesh

7

7Monday, April 15, 13

AMPI: BRAMS

8

8Monday, April 15, 13

AMPI: BRAMS

8

8Monday, April 15, 13

AMPI: BRAMS

8

8Monday, April 15, 13

AMPI: HPCCG

9

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

128" 256" 512" 1024"

Ti
m
e%
pe

r%s
te
p%

Numer%of%cores%

Uniform%distribu3on%of%non4zero%across%rows%

MPI"

AMPI"

9Monday, April 15, 13

AMPI: HPCCG

9

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

128" 256" 512" 1024"

Ti
m
e%
pe

r%s
te
p%

Numer%of%cores%

Uniform%distribu3on%of%non4zero%across%rows%

MPI"

AMPI"

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

128" 256" 512" 1024"

Ti
m
e%
pe

r%s
te
p%

Number%of%Cores%

Non1uniform%distribu3on%of%non1zeros%across%rows%

MPI"

AMPI"

9Monday, April 15, 13

AMPI: Work in Progress

Improved efficiency - newer algorithms.

Optimized support on IBM Blue Gene/Q

No support for mmap - no isomalloc.

Swapping globals.

10

10Monday, April 15, 13

Approach 2 - Interoperability

Chunk by chunk transition to Charm++.

Identify kernels that are better suited to Charm++.

Implement them in Charm++.

Make calls to Charm++ code from MPI based code.

11

11Monday, April 15, 13

Interoperability

Charm++ resides in the same memory space as the MPI based code.

Performs necessary low level initializations and resource procurement.

Pass memory locations - no messaging required.

Control transfer between Charm++ and the MPI based code analogous
to the control transfer between the MPI based code and any other
external library such as ParMETIS, FFTW etc.

12

12Monday, April 15, 13

Interoperability: Modes

13

13Monday, April 15, 13

Interoperability: Modes

13

MPI Control

Charm++ Control

Time

(a) Time Sharing

...

P(1) P(2) P(N-1) P(N)

13Monday, April 15, 13

Interoperability: Modes

13

(b) Space Sharing

...

P(1) P(2) P(N-1) P(N)

MPI Control

Charm++ Control

Time

(a) Time Sharing

...

P(1) P(2) P(N-1) P(N)

13Monday, April 15, 13

Interoperability: Modes

13

(c) Combined Sharing

...

P(1) P(2) P(N-1) P(N)

(b) Space Sharing

...

P(1) P(2) P(N-1) P(N)

MPI Control

Charm++ Control

Time

(a) Time Sharing

...

P(1) P(2) P(N-1) P(N)

13Monday, April 15, 13

Interoperability: Charm++ Code

Include mpi-interoperate.h.

Add an interface function callable from the main program.

14

14Monday, April 15, 13

Interoperability: Code Flow

Begin execution at user main.

Perform MPI initialization and application initialization.

Create a sub-communicator for Charm++.

Initialize Charm++ with this sub-communicator.

for (as many times needed)

perform MPI based communication and application work.

invoke Charm++ code.

Exit Charm++.

15

15Monday, April 15, 13

Interoperability: Example

16

16Monday, April 15, 13

Interoperability: Use cases

Demonstrated in HPC Challenge submission with FFT benchmark.

High performance sorting library based on

Highly Scalable Parallel Sorting by Edgar Solomonik and Laxmikant
Kale (IPDPS, 2009).

Efficient collision detection library based on

A Voxel based Parallel Collision Detection Algorithm by Orion
Lawlor and Laxmikant Kale (ICS, 2002).

17

17Monday, April 15, 13

Interoperability: Work in Progress

Enable space and combined sharing on non-MPI layers such as PAMI,
uGNI.

Development of interoperable libraries in Charm++

Graph algorithms - BFS, Spanning tree, Shortest path etc.

Efficient solvers.

Integrate performance analysis of interoperable code using Projections.

18

18Monday, April 15, 13

Questions

19

19Monday, April 15, 13

