
X10 at Petascale

Lessons learned from running X10 on the PERCS prototype

Olivier Tardieu

http://x10-lang.org

This material is based upon work supported by the Defense Advanced
Research Projects Agency under its Agreement No. HR0011-07-9-0002.	

Outline

§  X10 Overview
§  APGAS Programming model
§  implementation overview

§  Benchmarks
§  PERCS prototype
§  performance results

§  X10 at Scale
§  scheduling for SMPs and distributed systems
§  high-performance interconnects

§  Wrap-Up

2

X10 Overview

3

X10: Productivity and Performance at Scale

>8 years of R&D by IBM Research supported by DARPA (HPCS/PERCS)

Programming language
§  Bring Java-like productivity to HPC

§  evolution of Java with input from Scala, ZPL, CCP, …
§  imperative OO language, garbage collected, type & memory safe
§  rich data types and type system

§  Design for scale
§  multi-core, multi-processor, distributed, heterogeneous systems
§  few simple constructs for concurrency and distribution

Tool chain
§  Open source compilers, runtime, IDE
§  Debugger (not open source)

4

Partitioned Global Address Space (PGAS) Languages

Managing locality is a key programming task in a distributed-memory system

PGAS combines a single global address space with locality awareness
§  PGAS languages: Titanium, UPC, CAF, X10, Chapel
§  Single address space across all shared-memory nodes

§  any task or object can refer to any object (local or remote)
§  Partitioned to reflect locality

§  each partition (X10 place) must fit within a shared-memory node
§  each partition contains a collection of tasks and objects

In X10
§  tasks and objects are mapped to places explicitly
§  objects are immovable
§  tasks must spawn remote task or shift place to access remote objects

5

Place-shifting operations
•  at(p) S
•  at(p) e

… …… …	

Ac%vi%es	

Local	
 	

Heap	

Place	
 0	

……
…	

Ac%vi%es	

Local	
 	

Heap	

Place	
 N	

…	

Global	
 Reference	

Distributed heap
•  GlobalRef[T]
•  PlaceLocalHandle[T]

X10 Combines PGAS with Asynchrony (APGAS)

Fine-grain concurrency
•  async S
•  finish S

Atomicity
•  when(c) S
•  atomic S

6

Hello World

1/ class HelloWorld {!
2/ public static def main(args:Rail[String]) {!
3/ finish !

4/ for(p in Place.places()) !
5/ at(p) !
6/ async !
7/ Console.OUT.println(here + " says " + args(0));!
8/ }!
9/ }!

!
!

$ x10c++ HelloWorld.x10!

$ X10_NPLACES=4 ./a.out hello !

Place(1) says hello!

Place(3) says hello!

Place(2) says hello!

Place(0) says hello!

7

APGAS Idioms

§  Remote evaluation
v = at(p) evalThere(arg1, arg2);!

§  Active message
at(p) async runThere(arg1, arg2);

§  Recursive parallel decomposition
def fib(n:Int):Int {  
 if (n < 2) return 1;  
 val f1:Int;  
 val f2:Int;  
 finish {  
 async f1 = fib(n-1);  
 f2 = fib(n-2);  
 }  
 return f1 + f2;  
}!
!

§  SPMD
finish for (p in Place.places()) {  
 at(p) async runEverywhere();!
}!

§  Atomic remote update
at(ref) async atomic ref() += v;!

§  Data exchange
// swap row i local and j remote  
val h = here;  
val row_i = rows()(i);  
finish at(p) async {  
 val row_j = rows()(j);  
 rows()(j) = row_i;  
 at(h) async row()(i) = row_j;  
}!
!

8

X10 Implementation Overview

9

X10 Tool Chain

§  X10 is an open source project (Eclipse Public License)
§  latest release (X10 2.3.1) available at http://x10-lang.org
§  active research/academic community; workshops, papers, courses, etc.

§  X10 implementations
§  C++ based (“Native X10”)

§  multi-process (one place per process + GPU; multi-node)
§  x86, x86_64, Power; Linux, AIX, OS X, Cygwin, BG/P; TCP/IP, PAMI, DCMF, MPI; CUDA

§  JVM based (“Managed X10”)
§  multi-process (one place per JVM; multi-node) except on Windows (single place)
§  runs on any Java 6 or Java 7 JVM over TCP/IP

§  X10DT (Eclipse-based X10 IDE) available for Windows, Linux, OS X
§  supports many core development tasks including remote build/execute facilities
§  IBM Parallel Debugger for X10 Programming (not open source)

10

X10 Compilation and Execution

X10
Source

Parsing /
Type Check

AST Optimizations
AST Lowering X10 AST

X10 AST

Java Code
Generation

C++ Code
Generation

Java Source C++ Source

Java Compiler Platform Compilers XRJ XRC XRX

 Java Byteode Native executable

X10RT

X10 Compiler Front-End

Java
Back-End

C++
Back-End

Native Environment
(CPU, GPU, etc) Java VMs

JNI

Managed X10 Native X10

Existing Java Application Existing Native (C/C++/
etc) Application

Java Interop

Cuda Source

11

Native Runtime

XRX

X10 Runtime

§  X10RT (X10 runtime transport)
§  active messages, collectives, RDMAs
§  implemented in C; emulation layer

§  Native runtime
§  processes, threads, atomic operations
§  object model (layout, rtt, serialization)
§  two versions: C++ and Java

§  XRX (X10 runtime in X10)
§  implements APGAS: async, finish, at
§  X10 code compiled to C++ or Java

§  Core X10 libraries
§  x10.array, io, util, util.concurrent

X10 Application

X10RT

PAMI TCP/IP

X10 Core
Class Libraries

MPI DCMF CUDA

12

Benchmarks

13

Eight Kernels Running on the PERCS Prototype

§  4 HPC Challenge benchmarks
§  Linpack TOP500 (flops)
§  Stream local memory bandwidth
§  Random Access distributed memory bandwidth
§  Fast Fourier Transform mix

§  Machine learning kernels
§  SSCA1 pattern matching
§  KMEANS graph clustering
§  SSCA2 irregular graph traversal
§  UTS unbalanced tree traversal

§  At scale on the PERCS prototype (21 racks)
§  55,680 Power7 cores (1.7 PFLOPS)

14

Performance at Scale

cores absolute
performance

at scale

parallel efficiency
(weak scaling)

performance relative to best
implementation available

Stream 55,680 397 TB/s 98% 85% (lack of prefetching)

FFT 32,768 27 Tflops 93% 40% (no tuning of seq. code)

Linpack 32,768 589 Tflops 80% 80% (mix of limitations)

RandomAccess 32,768 843 Gups 100% 76% (network stack overhead)

KMeans 47,040 depends on
parameters

97.8% 66% (vectorization issue)

SSCA1 47,040 depends on
parameters

98.5% 100%

SSCA2 47,040 245 B edges/s > 75% no comparison data

UTS (geometric) 55,680 596 B nodes/s 98% reference code does not scale
4x to 16x faster than UPC code

15 15

HPCC Class 2 Competition: Best Performance Award

589231 22.4

18.0

16.00

18.00

20.00

22.00

24.00

0

200000

400000

600000

800000

0 16384 32768

G
flo

ps
/p

la
ce

G
flo

ps

Places

G-HPL

396614

7.23

7.12

0

5

10

15

0

100000

200000

300000

400000

500000

0 27840 55680

G
B

/s
/p

la
ce

G
B

/s

Places

EP Stream (Triad)

844

0.82
0.82

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

100

200

300

400

500

600

700

800

900

0 8192 16384 24576 32768

G
up

s/
pl

ac
e

G
up

s

Places

G-RandomAccess

26958

0.88

0.82

0.00
0.20
0.40
0.60
0.80
1.00
1.20

0
5000

10000
15000
20000
25000
30000

0 16384 32768
G

flo
ps

/p
la

ce

G
flo

ps

Places

G-FFT

356344

596451
10.93 10.87

10.71

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0

100000

200000

300000

400000

500000

600000

700000

0 13920 27840 41760 55680

M
ill

io
n

no
de

s/
s/

pl
ac

e

M
ill

io
n

no
de

s/
s

Places

UTS

16

X10 at Scale

17

Challenges

§  Scheduling
§  in each place: from many activities to few cores
§  across places: distributed load balancing

§  Coordination
§  distributed termination detection
§  collective control-flow

§  Communication
§  optimized point-to-point
§  collective data-flow

§  Memory management

§  And more…

18

Scheduling for SMPs

§  Many more activities than execution units (hardware threads)

§  Non-preemptive work-stealing schedulers
§  pool of worker threads, per-worker deque of pending jobs
§  worker first serves own deque then steals from other

§  Production scheduler
§  job = async body
§  pure runtime scheduler

§  Research scheduler [PPoPP’12,OOPSLA’12]
§  job = continuation
§  requires compiler hooks or JVM hooks Cilk-like performance
§  fixed-size thread pool

19

Distributed Load Balancing: Unbalanced Tree Search

§  Problem statement
§  count nodes in randomly generated tree
§  separable random number generator
§  cryptographic & highly unbalanced

§  Key insights
§  lifeline-based global work stealing [PPoPP’11]

§  n random victims then p lifelines (hypercube)
§  compact work queue (for shallow trees)

§  thief steals half of each work item

§  finish only accounts for lifelines
§  sparse communication graph

§  bounded list of potential random victims
§  finish trades contention for latency

 genuine APGAS algorithm

20

Distributed Termination

§  Distributed termination detection is hard
§  arbitrary message reordering

§  Base algorithm
§  one row of n counters per place with n places
§  increment on spawn, decrement on termination, message on decrement
§  finish triggered when sum of each column is zero

§  Optimized algorithms
§  local aggregation and message batching (up to local quiescence)
§  pattern-based specialization

§  local finish, SPMD finish, ping pong, single async
§  software routing
§  uncounted asyncs
§  pure runtime optimizations + static analysis + pragmas scalable finish

21

High-Performance Interconnects

§  RDMAs
§  efficient remote memory operations
§  fundamentally asynchronous good fit for APGAS

§  async semantics

Array.asyncCopy[Double](src, srcIndex, dst, dstIndex, size);!

§  Collectives
§  multi-point coordination and communication
§  all kinds of restrictions today poor fit for APGAS today

Team.WORLD.barrier(here.id);!
columnTeam.addReduce(columnRole, localMax, Team.MAX);!

§  bright future (MPI-3 and much more…) good fit for APGAS

22 22

Memory Management

§  Garbage collection
§  problem: risk of overhead and jitter
§  solution: mitigation techniques not an issue in practice

§  maximize memory reuse
§  GC hints (not always beneficial)
§  X10 runtime structures are freed explicitly

§  Low-level constraints
§  problem: not all pages are created equal

§  large pages required to minimize TLB misses
§  registered pages required for RDMAs
§  congruent addresses required for RDMAs at scale

§  solution: congruent memory allocator issue is contained
§  configurable congruent registered memory region

§  backed by large pages if available
§  only used for performance critical arrays

23

Adaptability

From 256 cores in January 2011 to 7,936 in March 2012 to 47,040 in July 2012
Delivery in August 2012

 good abstractions

24

?

Wrap-Up

25

Future Developments

§  Funding from US Dept. of Energy (X-Stack, part of D-TEC project -> 2015)
§  develop APGAS runtime based on X10 runtime to enable usage of APGAS

programming model (finish, async, at, places) from C/C++/Fortran code
§  integrate X10 compiler front-end with ROSE compiler infrastructure
§  enhance X10 language support for Domain Specific Languages (DSL)

§  Funding from US Air Force Research Lab (Resilient and Elastic X10 -> 2014)
§  add support for place failure and dynamic place creation to X10 runtime & language

§  X10 for Big Data
§  enhance Managed X10 (X10 on JVMs) to support development of IBM middleware

§  X10 for HPC
§  support porting of X10 to new systems (BlueGene/Q, K Computer, Tsubame)
§  enhance MPI backend and interoperability

26

Selected Application Projects

IBM
§  Main Memory Map Reduce (M3R)

§  map/Reduce engine in X10 optimized for in-memory workloads
§  Global Matrix Library (open source)

§  matrix (sparse & dense) library supporting parallel execution on multiple places
§  SAT-X10

§  X10 control program to join existing SAT solvers into parallel, distributed solver
Community
§  ANUChem

§  computational chemistry library developed by Australia National University
§  ScaleGraph

§  scalable graph library developed by Tokyo Institute of Technology
§  XAXIS

§  large-scale agent simulation platform developed by Tokyo Institute of Technology

27

Final Thoughts

Give X10 a try!
§  Language definition is stable
§  Tool chain is good enough, generated code is good

§  Main X10 website
http://x10-lang.org

§  “A Brief Introduction to X10 (for the HPC Programmer)”
http://x10.sourceforge.net/documentation/intro/intro-223.pdf

§  X10 2012 HPC challenge submission
http://hpcchallenge.org
http://x10.sourceforge.net/documentation/hpcc/x10-hpcc2012-paper.pdf
http://x10.sourceforge.net/documentation/hpcc/x10-hpcc2012-slides.pdf

28

