X10 at Petascale

Lessons learned from running X10 on the PERCS prototype

Olivier Tardieu

http.//x10-lang.org

This material is based upon work supported by the Defense Advanced
Research Projects Agency under its Agreement No. HRO011-07-9-0002.

Outline

X10 Overview
» APGAS Programming model
» implementation overview

Benchmarks
= PERCS prototype
» performance results

X10 at Scale

» scheduling for SMPs and distributed systems
» high-performance interconnects

Wrap-Up

X10 Overview

X10: Productivity and Performance at Scale

>8 years of R&D by IBM Research supported by DARPA (HPCS/PERCS)

Programming language

= Bring Java-like productivity to HPC
= evolution of Java with input from Scala, ZPL, CCP, ...
= imperative OO language, garbage collected, type & memory safe
» rich data types and type system

= Design for scale
» multi-core, multi-processor, distributed, heterogeneous systems
» few simple constructs for concurrency and distribution

Tool chain
= Open source compilers, runtime, IDE
= Debugger (not open source)

Partitioned Global Address Space (PGAS) Languages

Managing locality is a key programming task in a distributed-memory system

PGAS combines a single global address space with locality awareness
» PGAS languages: Titanium, UPC, CAF, X10, Chapel

» Single address space across all shared-memory nodes
= any task or object can refer to any object (local or remote)

» Partitioned to reflect locality
» each partition (X10 place) must fit within a shared-memory node
= each partition contains a collection of tasks and objects

In X10

= tasks and objects are mapped to places explicitly

» objects are immovable

» tasks must spawn remote task or shift place to access remote objects

X10 Combines PGAS with Asynchrony (APGAS)

Global Reference

3 Local

Local

Heap r —

ll ‘1’ Activities ‘l’
Place O

Fine-grain concurrency

* async S
 finish S

Place-shifting operations
* at(p) S
- at(p) e

Heap

1 s
Activities

Place N

Atomicity

* when(c) S

e atomic S

Distributed heap

* GlobalRef [T]
e PlacelocalHandle|[T]

Hello World

1/
2/
3/
4/
5/
6/
7/
8/
9/

class HelloWorld ({
public static def main(args:Rail[String]) {

finish

for(p in Place.places())

at(p)
async

Console.OUT.println(here + says

+ args(0));

0

(D

$ x10c++ HelloWorld.x1lO0

$ X10 NPLACES=4 ./a.out hello
Place(l) says hello

Place(3) says hello

Place(2) says hello

Place(0) says hello

APGAS Idioms

= Remote evaluation = SPMD
v = at(p) evalThere(argl, arg2); finish for (p in Place.places()) {
at(p) async runEverywhere();
}

= Active message

at(p) async runThere(argl, arg2); _
= Atomic remote update

. . at(ref) async atomic ref() += v;
» Recursive parallel decomposition

def fib(n:Int):Int {

if (n < 2) return 1;
val fl:Int;
val f2:Int;

finish {
async fl1 = fib(n-1);
f2 = fib(n-2);

}

return f1 + £2;

Data exchange

// swap row i local and j remote
val h = here;

val row i = rows()(1i);

finish at(p) async {

val row j = rows()(J);

rows()(j) = row i;

at(h) async row()(i) = row Jj;
}

X10 Implementation Overview

X10 Tool Chain

= X10 is an open source project (Eclipse Public License)
» |atest release (X10 2.3.1) available at http://x10-lang.org
= active research/academic community; workshops, papers, courses, etc.

= X10 implementations

» C++ based (“Native X107)
= multi-process (one place per process + GPU; multi-node)
= x86, x86_64, Power; Linux, AlX, OS X, Cygwin, BG/P; TCP/IP, PAMI, DCMF, MPI; CUDA

» JVM based (“Managed X10”)

= multi-process (one place per JVM; multi-node) except on Windows (single place)
= runs on any Java 6 or Java 7 JVM over TCP/IP

= X10DT (Eclipse-based X10 IDE) available for Windows, Linux, OS X
» supports many core development tasks including remote build/execute facilities
» |IBM Parallel Debugger for X10 Programming (not open source)

10

X10 Compilation and Execution

X10
Source

' Parsing /
I Type Check

Java Interop

—— e —

e

AST Optimizations
X10 AST AST Lowering

X10 AST

—————

\ 4

Native X10

—— e e = = ===

RN
Java \ 4 | (v C++ I
Back-End Java Code 1 | C++ Code Back-End I
Generation 1 | Generation I
1
| | I
A 1 I v
[Java Source J : I [C++ Source J Cuda Source I
|
1
47 1 I |
XRJ Java Compiler d—l—[XRX]—l—> Platform Compilers 4—[XRC] |
|
/ J
-

[Existing Java Application]4/’[

Java Byteode J

v

N = -

\ 4

[Native executable J «—>
JNI \4

Java VMs

Native Environment
< l i l > (CPU, GPU, etc)

[

Existing Native (C/C++/
etc) Application

)

11

X10 Runtime

X10RT (X10 runtime transport)
» active messages, collectives, RDMAs
= implemented in C; emulation layer X10 Application

Native runtime

= processes, threads, atomic operations
» object model (layout, rtt, serialization)
= two versions: C++ and Java

XRX (X10 runtime in X10)

» implements APGAS: async, finish, at
= X10 code compiled to C++ or Java A
* Core X10 libraries PAMI| [TCP/IP|| MPI| IDCMF| |CUDA

» x10.array, io, util, util.concurrent

Benchmarks

13

Eight Kernels Running on the PERCS Prototype

» 4 HPC Challenge benchmarks

» Linpack TOPS500 (flops)
= Stream local memory bandwidth
= Random Access distributed memory bandwidth

Fast Fourier Transform mix

= Machine learning kernels %
= SSCA1 pattern matching Fos

= KMEANS graph clustering E
= SSCA2 irregular graph traversal E
= UTS unbalanced tree traversal §
L =3

= At scale on the PERCS prototype (21 racks)
= 55,680 Power7 cores (1.7 PFLOPS)

14

Performance at Scale

absolute parallel efficiency performance relative to best
performance (weak scaling) implementation available
at scale
Stream 55,680 397 TB/s 98% 85% (lack of prefetching)
FFT 32,768 27 Tflops 93% 40% (no tuning of seq. code)
Linpack 32,768 589 Tflops 80% 80% (mix of limitations)
RandomAccess 32,768 843 Gups 100% 76% (network stack overhead)
KMeans 47,040 depends on 97.8% 66% (vectorization issue)
parameters
SSCA1 47,040 dependson 98.5% 100%
parameters
SSCA2 47,040 245B edges/s >75% no comparison data
UTS (geometric) 55,680 596 B nodes/s 98% reference code does not scale

4x to 16x faster than UPC code

15

HPCC Class 2 Competition: Best Performance Award

900
800
700
600

2 500

& 400
300
200
100

G-FFT

26958

0 16384 32768

Places

o

(@]

o
Gflops/place

G-RandomAccess

G-HPL

800000
600000
n
Q.
2400000
o
200000
0

844

0 8192

16384
Places

24576

32768

Gups/place

16384
Places

Million nodes/s

EP Stream (Triad)

24.00 500000

396614
589231 o
2200 & 400000
= . 300000 -
2000 » o
S O 200000 |
- 18.00 & 100000 '
—- 16.00 0 ,
32768 0 27840 55680
Places
UTS
700000 596451
600000
500000
400000
300000
200000
100000
0 T T T T
0 13920 27840 41760 55680

Places

15

10

GB/s/place

14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.00

16

Million nodes/s/place

X10 at Scale

17

Challenges

Scheduling
* in each place: from many activities to few cores
= across places: distributed load balancing

Coordination
= distributed termination detection
= collective control-flow

Communication
= optimized point-to-point
= collective data-flow

Memory management

And more...

18

Scheduling for SMPs

Many more activities than execution units (hardware threads)

Non-preemptive work-stealing schedulers
= pool of worker threads, per-worker deque of pending jobs
= worker first serves own deque then steals from other

Production scheduler
= job = async body
= pure runtime scheduler

Research scheduler [PPoPP’12,00PSLA12]

= job = continuation

= requires compiler hooks or JVM hooks » Cilk-like performance
» fixed-size thread pool

19

Distributed Load Balancing: Unbalanced Tree Search

* Problem statement
= count nodes in randomly generated tree
» separable random number generator
= cryptographic & highly unbalanced

Tree size = 157063485501 nodes, Performance = 257.64 M nodes/sec
Run params: -r 559 -g 0.4999995 -w 1 -z 3 -m 2 -b 2000

= Key insights
» lifeline-based global work stealing [PPoPP’11]
» nrandom victims then p lifelines (hypercube)
= compact work queue (for shallow trees)
» thief steals half of each work item
» finish only accounts for lifelines
= sparse communication graph

= bounded list of potential random victims
= finish trades contention for latency Time

s Computing
s Stealing
m—— Distributing
s Dead

Number of Processors

» genuine APGAS algorithm

20

Distributed Termination

= Distributed termination detection is hard

arbitrary message reordering

» Base algorithm

one row of n counters per place with n places
increment on spawn, decrement on termination, message on decrement

» finish triggered when sum of each column is zero

= Optimized algorithms

local aggregation and message batching (up to local quiescence)
pattern-based specialization

» |ocal finish, SPMD finish, ping pong, single async

software routing

uncounted asyncs

pure runtime optimizations + static analysis + pragmas » scalable finish

21

High-Performance Interconnects

= RDMAs
» efficient remote memory operations

» fundamentally asynchronous
» async semantics

» good fit for APGAS

Array.asyncCopy[Double] (src, srcIndex, dst, dstIndex, size);

= Collectives
» multi-point coordination and communication I

= all kinds of restrictions today poor fit for APGAS today

Team.WORLD.barrier (here.id);

columnTeam.addReduce(columnRole, localMax, Team.MAX);

=

= bright future (MPI-3 and much more...) good fit for APGAS

22

Memory Management

» Garbage collection
= problem: risk of overhead and jitter
» solution: mitigation techniques
" maximize memory reuse
= GC hints (not always beneficial)
= X10 runtime structures are freed explicitly

= Low-level constraints
= problem: not all pages are created equal
» |arge pages required to minimize TLB misses
= registered pages required for RDMAs
= congruent addresses required for RDMAs at scale
= solution: congruent memory allocator
= configurable congruent registered memory region
» backed by large pages if available
= only used for performance critical arrays

» not an issue in practice

» issue is contained

23

Adaptability

From 256 cores in January 2011 to 7,936 in March 2012 to 47,040 in July 2012
Delivery in August 2012

» good abstractions

24

Wrap-Up

25

Future Developments

Funding from US Dept. of Energy (X-Stack, part of D-TEC project -> 2015)

» develop APGAS runtime based on X10 runtime to enable usage of APGAS
programming model (finish, async, at, places) from C/C++/Fortran code

» integrate X10 compiler front-end with ROSE compiler infrastructure
» enhance X10 language support for Domain Specific Languages (DSL)

Funding from US Air Force Research Lab (Resilient and Elastic X10 -> 2014)
= add support for place failure and dynamic place creation to X10 runtime & language

X10 for Big Data
» enhance Managed X10 (X10 on JVMs) to support development of IBM middleware

X10 for HPC
= support porting of X10 to new systems (BlueGene/Q, K Computer, Tsubame)
= enhance MPI backend and interoperability

Selected Application Projects

IBM
= Main Memory Map Reduce (M3R)
» map/Reduce engine in X10 optimized for in-memory workloads
» Global Matrix Library (open source)
» matrix (sparse & dense) library supporting parallel execution on multiple places
= SAT-X10
= X10 control program to join existing SAT solvers into parallel, distributed solver
Community
= ANUChem
= computational chemistry library developed by Australia National University
» ScaleGraph
» scalable graph library developed by Tokyo Institute of Technology
= XAXIS
» large-scale agent simulation platform developed by Tokyo Institute of Technology

27

Final Thoughts

Give X10 a try!

Language definition is stable
Tool chain is good enough, generated code is good

Main X10 website
http://x10-lang.org

“A Brief Introduction to X10 (for the HPC Programmer)”
http://x10.sourceforge.net/documentation/intro/intro-223.pdf

X10 2012 HPC challenge submission
http://hpcchallenge.org

http://x10.sourceforge.net/documentation/hpcc/x10-hpcc2012-paper.pdf

http://x10.sourceforge.net/documentation/hpcc/x10-hpcc2012-slides.pdf

28

