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X10 Overview 
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X10: Productivity and Performance at Scale 

>8 years of R&D by IBM Research supported by DARPA (HPCS/PERCS) 
 
Programming language 
§  Bring Java-like productivity to HPC 

§  evolution of Java with input from Scala, ZPL, CCP, … 
§  imperative OO language, garbage collected, type & memory safe 
§  rich data types and type system 

§  Design for scale 
§  multi-core, multi-processor, distributed, heterogeneous systems 
§  few simple constructs for concurrency and distribution 

Tool chain 
§  Open source compilers, runtime, IDE 
§  Debugger (not open source) 
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Partitioned Global Address Space (PGAS) Languages 

Managing locality is a key programming task in a distributed-memory system 

PGAS combines a single global address space with locality awareness 
§  PGAS languages: Titanium, UPC, CAF, X10, Chapel 
§  Single address space across all shared-memory nodes 

§  any task or object can refer to any object (local or remote) 
§  Partitioned to reflect locality 

§  each partition (X10 place) must fit within a shared-memory node 
§  each partition contains a collection of tasks and objects 

In X10 
§  tasks and objects are mapped to places explicitly 
§  objects are immovable 
§  tasks must spawn remote task or shift place to access remote objects 
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Place-shifting operations 
•   at(p) S 
•  at(p) e 
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Distributed heap 
•   GlobalRef[T] 
•  PlaceLocalHandle[T] 

X10 Combines PGAS with Asynchrony (APGAS) 

Fine-grain concurrency 
•   async S 
•  finish S 

Atomicity 
•   when(c) S 
•  atomic S 
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Hello World 

1/  class HelloWorld {!
2/    public static def main(args:Rail[String]) {!
3/      finish !

4/        for(p in Place.places()) !
5/          at(p) !
6/            async !
7/              Console.OUT.println(here + " says " + args(0));!
8/    }!
9/  }!

!
!
 

$ x10c++ HelloWorld.x10!

$ X10_NPLACES=4 ./a.out hello !

Place(1) says hello!

Place(3) says hello!

Place(2) says hello!

Place(0) says hello!
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APGAS Idioms 

§  Remote evaluation 
v = at(p) evalThere(arg1, arg2);!

§  Active message 
at(p) async runThere(arg1, arg2); 

§  Recursive parallel decomposition 
def fib(n:Int):Int {  
  if (n < 2) return 1;  
  val f1:Int;  
  val f2:Int;  
  finish {  
    async f1 = fib(n-1);  
    f2 = fib(n-2);  
  }  
  return f1 + f2;  
}!
!

§  SPMD 
finish for (p in Place.places()) {  
  at(p) async runEverywhere();!
}!

§  Atomic remote update 
at(ref) async atomic ref() += v;!

§  Data exchange 
// swap row i local and j remote  
val h = here;  
val row_i = rows()(i);  
finish at(p) async {  
  val row_j = rows()(j);  
  rows()(j) = row_i;  
  at(h) async row()(i) = row_j;  
}!
!
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X10 Implementation Overview 
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X10 Tool Chain 

§  X10 is an open source project (Eclipse Public License) 
§  latest release (X10 2.3.1) available at http://x10-lang.org 
§  active research/academic community; workshops, papers, courses, etc. 

§  X10 implementations 
§  C++ based (“Native X10”) 

§  multi-process (one place per process + GPU; multi-node) 
§  x86, x86_64, Power; Linux, AIX, OS X, Cygwin, BG/P; TCP/IP, PAMI, DCMF, MPI; CUDA 

§  JVM based (“Managed X10”) 
§  multi-process (one place per JVM; multi-node) except on Windows (single place) 
§  runs on any Java 6 or Java 7 JVM over TCP/IP 

§  X10DT (Eclipse-based X10 IDE) available for Windows, Linux, OS X 
§  supports many core development tasks including remote build/execute facilities 
§  IBM Parallel Debugger for X10 Programming (not open source) 
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X10 Compilation and Execution 

X10 
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X10 Runtime 

§  X10RT (X10 runtime transport) 
§  active messages, collectives, RDMAs 
§  implemented in C; emulation layer 

§  Native runtime 
§  processes, threads, atomic operations 
§  object model (layout, rtt, serialization) 
§  two versions: C++ and Java 

§  XRX (X10 runtime in X10) 
§  implements APGAS: async, finish, at 
§  X10 code compiled to C++ or Java 

§  Core X10 libraries 
§  x10.array, io, util, util.concurrent 

X10 Application 

X10RT 

PAMI TCP/IP 

X10 Core  
Class Libraries 

MPI DCMF CUDA 
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Benchmarks 
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Eight Kernels Running on the PERCS Prototype 

§  4 HPC Challenge benchmarks 
§  Linpack            TOP500 (flops) 
§  Stream              local memory bandwidth 
§  Random Access           distributed memory bandwidth 
§  Fast Fourier Transform  mix 

§  Machine learning kernels 
§  SSCA1              pattern matching 
§  KMEANS             graph clustering 
§  SSCA2              irregular graph traversal 
§  UTS              unbalanced tree traversal 

§  At scale on the PERCS prototype (21 racks) 
§  55,680 Power7 cores (1.7 PFLOPS) 
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Performance at Scale 

cores absolute 
performance 

at scale 

parallel efficiency 
(weak scaling) 

performance relative to best 
implementation available 

Stream 55,680 397 TB/s 98% 85% (lack of prefetching) 

FFT 32,768 27 Tflops 93% 40% (no tuning of seq. code) 

Linpack 32,768 589 Tflops 80% 80% (mix of limitations) 

RandomAccess 32,768 843 Gups 100% 76% (network stack overhead) 

KMeans 47,040 depends on 
parameters 

97.8% 66% (vectorization issue) 

SSCA1 47,040 depends on 
parameters 

98.5% 100% 

SSCA2 47,040 245 B edges/s > 75% no comparison data 

UTS (geometric) 55,680 596 B nodes/s 98% reference code does not scale 
4x to 16x faster than UPC code 
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HPCC Class 2 Competition: Best Performance Award 
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X10 at Scale 
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Challenges 

§  Scheduling 
§  in each place: from many activities to few cores 
§  across places: distributed load balancing 

§  Coordination 
§  distributed termination detection 
§  collective control-flow 

§  Communication 
§  optimized point-to-point 
§  collective data-flow 

§  Memory management 

§  And more… 
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Scheduling for SMPs 

§  Many more activities than execution units (hardware threads) 

§  Non-preemptive work-stealing schedulers 
§  pool of worker threads, per-worker deque of pending jobs 
§  worker first serves own deque then steals from other 

§  Production scheduler 
§  job = async body 
§  pure runtime scheduler 

§  Research scheduler [PPoPP’12,OOPSLA’12] 
§  job = continuation 
§  requires compiler hooks or JVM hooks       Cilk-like performance 
§  fixed-size thread pool 
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Distributed Load Balancing: Unbalanced Tree Search 

§  Problem statement 
§  count nodes in randomly generated tree 
§  separable random number generator 
§  cryptographic & highly unbalanced 

§  Key insights 
§  lifeline-based global work stealing [PPoPP’11] 

§  n random victims then p lifelines (hypercube) 
§  compact work queue (for shallow trees)    

§  thief steals half of each work item 

§  finish only accounts for lifelines 
§  sparse communication graph 

§  bounded list of potential random victims 
§  finish trades contention for latency 

 
         genuine APGAS algorithm 
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Distributed Termination 

§  Distributed termination detection is hard 
§  arbitrary message reordering 

§  Base algorithm 
§  one row of n counters per place with n places 
§  increment on spawn, decrement on termination, message on decrement 
§  finish triggered when sum of each column is zero 

§  Optimized algorithms 
§  local aggregation and message batching (up to local quiescence) 
§  pattern-based specialization 

§  local finish, SPMD finish, ping pong, single async 
§  software routing 
§  uncounted asyncs 
§  pure runtime optimizations + static analysis + pragmas     scalable finish 
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High-Performance Interconnects 

§  RDMAs 
§  efficient remote memory operations 
§  fundamentally asynchronous      good fit for APGAS 

§  async semantics 

Array.asyncCopy[Double](src, srcIndex, dst, dstIndex, size);!

§  Collectives 
§  multi-point coordination and communication 
§  all kinds of restrictions today      poor fit for APGAS today 

Team.WORLD.barrier(here.id);!
columnTeam.addReduce(columnRole, localMax, Team.MAX);!

§  bright future (MPI-3 and much more…)     good fit for APGAS 
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Memory Management 

§  Garbage collection 
§  problem: risk of overhead and jitter 
§  solution: mitigation techniques      not an issue in practice 

§  maximize memory reuse 
§  GC hints (not always beneficial) 
§  X10 runtime structures are freed explicitly 
 

§  Low-level constraints 
§  problem: not all pages are created equal 

§  large pages required to minimize TLB misses 
§  registered pages required for RDMAs 
§  congruent addresses required for RDMAs at scale      

§  solution: congruent memory allocator        issue is contained 
§  configurable congruent registered memory region 

§  backed by large pages if available 
§  only used for performance critical arrays 
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Adaptability 

From 256 cores in January 2011 to 7,936 in March 2012 to 47,040 in July 2012 
Delivery in August 2012 

            good abstractions 
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Wrap-Up 
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Future Developments 

§  Funding from US Dept. of Energy (X-Stack, part of D-TEC project -> 2015) 
§  develop APGAS runtime based on X10 runtime to enable usage of APGAS 

programming model (finish, async, at, places) from C/C++/Fortran code 
§  integrate X10 compiler front-end with ROSE compiler infrastructure 
§  enhance X10 language support for Domain Specific Languages (DSL) 

§  Funding from US Air Force Research Lab (Resilient and Elastic X10 -> 2014) 
§  add support for place failure and dynamic place creation to X10 runtime & language 

§  X10 for Big Data 
§  enhance Managed X10 (X10 on JVMs) to support development of IBM middleware 

§  X10 for HPC 
§  support porting of X10 to new systems (BlueGene/Q, K Computer, Tsubame) 
§  enhance MPI backend and interoperability 
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Selected Application Projects 

IBM 
§  Main Memory Map Reduce (M3R) 

§  map/Reduce engine in X10 optimized for in-memory workloads 
§  Global Matrix Library (open source) 

§  matrix (sparse & dense) library supporting parallel execution on multiple places 
§  SAT-X10 

§  X10 control program to join existing SAT solvers into parallel, distributed solver 
Community 
§  ANUChem 

§  computational chemistry library developed by Australia National University 
§  ScaleGraph 

§  scalable graph library developed by Tokyo Institute of Technology 
§  XAXIS 

§  large-scale agent simulation platform developed by Tokyo Institute of Technology 
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Final Thoughts 

Give X10 a try! 
§  Language definition is stable 
§  Tool chain is good enough, generated code is good 

§  Main X10 website 
http://x10-lang.org 

§  “A Brief Introduction to X10 (for the HPC Programmer)” 
http://x10.sourceforge.net/documentation/intro/intro-223.pdf 

§  X10 2012 HPC challenge submission 
http://hpcchallenge.org 
http://x10.sourceforge.net/documentation/hpcc/x10-hpcc2012-paper.pdf 
http://x10.sourceforge.net/documentation/hpcc/x10-hpcc2012-slides.pdf 
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