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§  We can collect data at scale, but data volume is 
overwhelming 
•  Too many variables to measure 
•  Difficult to write out data from 500 million cores, even 

if we do measure it 

§  Information is highly categorical, discontinuous 
•  Profiles, traces 
•  Hardware Performance Counters 
—  FP counts, cache misses, network traffic 

•  Counts map to particular cores 

§  MPI Process ID space is often unintuitive 
•  Rank offers little insight into underlying network 

§  It is difficult to apply analysis techniques because 
this data lacks structure 
 

MPI Trace Data from runs 
with 16 and 34 processes 
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§  How can we make raw performance 
data more useful? 

§  Application developers understand 
application data 
•  Temperature plot of Miranda data 

§  What if we could map performance 
attributes onto application data 
structures? 
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§  We constructed a simple example to 
show FP data in the application domain 
•  Can show cache misses similarly  

§  This is only the tip of the iceberg 
§  We must extend this approach to more 

domains and more complex data 
§  We will enable feature-based analysis 

and correlations 

Temperature Floating Point  Cache 
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Performance Data 
in Network Topology 
Communication 

Patterns 

Physical 
Simulation 
Data 

§  PAVE will develop new analysis techniques to: 
•  Attribute performance measurements to intuitive domains: 

Physical, Hardware, and Communication 
•  Extract features within data domains 
•  Correlate features between domains 
•  Analyze mappings among domains 

•  We will extend run-time performance analysis 
for application-semantic attribution at scale 

•  We will restructure performance data so that it is 
amenable to analysis 

•  We will develop analysis techniques to correlate and 
map features between these domains 

§  This work can only be accomplished by 
combining and extending state-of-the-art  
techniques from two fields: 

§  Data domains, the correlations between them,  
and the analysis of their mappings will provide 
new insights into application performance 



Lawrence Livermore National Laboratory LLNL-PRES-635584 
6 

1.  Hardware to Application mapping 
•  Data-dependent computation in fluid dynamics simulations 

2.  Communication Visualization for AMR 
•  Visualizing bottlenecks in  

3.  Boxfish network visualization tool 
•  Plotting network counters on the network 

4.  Future Directions 
•  Higher resolution hardware to application mapping 
•  Adding structure back to parallel trace visualizations 
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7

Aluminum distribution Velocity distribution 

Floating point operations L1 cache misses 
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8

§  One core on each socket has more L1 misses 
§  Caused by execution of MPI collective 

operations 
§  Need for different perspectives to 

disambiguate causes 
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L1 Cache Misses FP Operations 

Same data with linear color map 
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L1 Cache Misses with MPI worker filtered FP Operations 

Same data with linear color map 
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L1 Cache Misses with MPI worker filtered FP Operations 

Same data with linear color map 

L1 Misses per FP operation: Proxy for efficiency 
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1
2

§  Case study: SAMRAI, structured adaptive 
mesh refinement 
•  Blue Gene/P at Argonne (256 to 128K cores) 
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1
3

MPI rank 

§  Bottleneck is in phase 1 and not phase 3 
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1
4

Load (Cells per process) 
Before balancing 

Time spent 
redistributing boxes 
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Fig. 10. Maximum number of boxes sent on any edge of the tree as a function
of the number of processors (on Blue Gene/P). The binary tree overlay funnels
a large portion of these messages through few links during load balancing
causing the scalability bottleneck.

on 256 cores on any given edge in the tree. This explains the
scalability bottleneck (attributed to the load balancing phase)
that we observed in Figure 4. While the tree network that is
used for load balancing places an upper bound on the number
of hops a box may travel, it may funnel load from subtrees
through sparse edges near the root. This makes the algorithm
susceptible to small variations in the initial distribution of load
and leads to a flow problem [14] where a large number of
boxes are routed through a single edge to replenish an under-
utilized sub-tree.

Fig. 12. The wait times for phase 1 and flow information for the 256 core run
shown in Fig. 7. There exist several heavily used edges not directly related
to the scaling bottleneck including the heaviest edge on the top right. This
makes any analysis based solely on this data difficult at best and inconclusive
at worst.

Fig. 11(a) shows the overlay network with the wait times
in phase 1 and flow information for 1024 cores, Fig. 11(b) for
2048 cores, and Fig. 1(c) for 16384 cores. The load imbalance
moves progressively further down the tree but the essential
problem remains the same. Fig. 12 shows the data of Fig. 7 and
indicates why any analysis based on such a small run would
be misleading: The run is too small for the scaling bottleneck
to dominate which results in an inconclusive picture of the
flow. Note how there exist several heavily used edges in the
tree of Fig. 12 not related to the fundamental problem.

Fig. 13. An adaptively refined layout of the tree for 1024 cores. We apportion
the angles based on the overall weights of the subtree and refine heavier trees
to deeper levels. Adaptively refined layouts enable us to examine problem
regions at any level of the tree.

To preserve the symmetry of the tree layout and provide
the most direct visual link with the mental picture of a binary
tree we have chosen to refine all subtrees to an equal depth.
However, in cases where the problem exists too far away from
the root we provide an adaptively refined layout (see Fig. 13)
which enables us to highlight flow problems at any level of
the tree. In the adaptive layout we re-scale the angle assigned
to the subtrees by their accumulated weights (wait time in this
case) and refine until the variance with each subtree is below
a given threshold.

VI. TURNING INSIGHT INTO OPTIMIZATION

The insight gained by interpreting the performance data
in the communication domain directly points to the core
problem: Scalability in the load balancing phase is restricted
by a flow problem in the virtual tree topology. If a particular

1024 processes 
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(a) (b) (c)

Fig. 1. Visualization of the binary overlay network used in SAMRAI’s load balancing phase for 16384 proceses. (a) Nodes colored by relative load before
the re-balancing. Three subtrees show an aggregated excess of about 3% each while one subtree shows a 9% deficit. (b) Nodes colored by times spent waiting
to receive excess load. (c) The tree of (b) with arrows scaled by the number of elements sent across, highlighting the problem. The tree structure acts as a
funnel with most excess being forces along a single edge causing a linear amount of processing.

problem which turned out to be related to the load balancing
phase of the mesh adaptation stage. It is critically important to
analyze all collected data in the context of the special binary
tree shaped overlay networked used during this phase. As
shown in Fig. 1(a) the tree shows a seemingly insignificant
load imbalance which is concentrated in one of its four quad-
rants. However, looking at the times spent waiting to address
this imbalance (Fig. 1(b)) reveals a strong correlation. Finally,
including the amount of meta-information moved (Fig. 1(c))
clearly shows the problem: a linear number of elements must
travel over just one edge of the tree ultimately causing a linear
scaling of the code. Note that, as will be discussed in detail
below, this is neither a latency (the number of hops messages
travel is provably scaling as log) nor a bandwidth problem (the
size of messages is small), which made it difficult to diagnose
with traditional techniques. These insights have allowed us
to propose a mitigation strategy that has resulted in a 22%
overall performance increase for a 65,536-core run on a Blue
Gene/P system. Furthermore, the detailed analysis will enable
us to redesign the load balancing algorithm to remove the
scalability problem completely in the future.

II. PROJECTING DATA ACROSS DOMAINS

Schulz et al. [1] have developed a taxonomy of performance
data that divides measurements into three key domains. These
are the hardware domain, consisting of processors embedded
in a network with some topology; the application domain,
consisting of information from the application’s simulated
physical domain; and the communication domain, consisting
of abstract graphs with processes as nodes and communication
between them represented as edges. This framework is called
the HAC model (see Figure 2).

While symptoms may show up in any of these domains, the
actual root causes could lie in any other. We therefore need
new techniques for visualizing and analyzing performance data
that correlate symptoms to causes by projecting performance
data from one domain to another in order to make correlations
and root causes more clear.

Application Domain
(Physical simulation space)

Hardware Domain
(Flops, cache misses, 
network topology)

Communication 
Domain

(Virtual topology)

Data 
Analysis and 
Visualization

Fig. 2. The HAC model: Data used for performance analysis is divided
into three domains. New visualization and analysis techniques that project
data between these domains correlate problem symptoms in one domain to
behavior in another, making it easier and more efficient to determine the
problem origin.

The difficulty of projecting data across domains depends on
how much and how frequently the relationships between do-
mains change. For example, in a statically decomposed, struc-
tured grid application, the domain decomposition is fixed, and
we can assume that per-process measurements are associated
with a particular chunk of the decomposed application domain.
In dynamic applications, which will get more commonplace as
we move to more complex architectures and applications on
our path to exascale, this is no longer the case. For example,
in an AMR code the physical domain is decomposed into
variable sized units, which can be moved dynamically from
process to process. We must therefore take special care to
track the units as they move around the system in order to
detect a performance problem that arises because of particular
application features in one part of the application domain.

Similarly, for a structured grid code, most communication is
regular. For example, many such codes use a simple stencil-
patterned ghost exchange among neighboring processes. We
can easily make assumptions about which processes commu-

Load on 16k cores Wait time for box 
distribution 

Wait time with 
flow information 

This shows data for 16,384 cores 
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§  Angles are apportioned by flow 
in the subtree 

§  Heavier trees are expanded to a 
deeper level 

§  Can see flow problems at any 
level of the tree 

1024-process expanded tree 
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1
7

§  Mitigate the problem by reducing the size of box metadata 
§  Trade off slightly increased imbalance for coarser boxes 

§  Leads to 50% reduction in load balancing time at 64k cores 

•  22% reduction in overall time on 65k cores 
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§  We have mapped network 
measurements to SAMRAI patches 

§  Plots show patches colored by 
maximum hops on the physical 
network to any neighbor patch 

§  SAMRAI LinAdv  benchmark does 
not appear to be affected by this 
imbalance, but other codes will be. 

L1 

L2 

L3 
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Fig. 12: Two-dimensional projections of the 3D torus network. Each column displays the network traffic along the three directions, X , Y and Z for five
mappings of pF3D on 512 nodes: TXYZ, XYZT, tile, tiltX, tiltXY

Fig. 11: Time spent in different MPI calls for five different mappings of a
16� 8� 16 pF3D grid to 512 nodes of Blue Gene/P

Fig. 11 shows the reduction in the time spent in MPI Send
and MPI Alltoall using each of these optimized mappings. The
XYZT mapping reduces the time spent in MPI Sends signifi-
cantly because inter-plane communication now happens on the
four cores of a node. Only every fourth application plane has
to communicate with its adjacent plane on another node. The
tile and tiltX mappings reduce the time for MPI Sends further
but increase the time taken for the all-to-alls compared to the
XYZT mapping. The twice-tilted tiltXY mapping reduces the
time spent in both (thus optimizing the intra- and inter-plane
communication). At 2048 cores, the communication is only
10% of the total execution time, hence the overall performance
improvements are not as significant. The iteration time for the
five mappings are 417.371, 407.158, 403.677, 403.959 and
403.813 seconds respectively.

To better understand the impact of mapping and routing on
the performance, we have collected network counter data for
all links of the torus for the five mappings described above (see

Fig. 12). We use a novel projection of the three-dimensional
network topology provided by Boxfish, an integrated perfor-
mance analysis and visualization tool we have developed. Each
image of Fig. 12 shows all network links along two torus
dimensions aggregated into bundles along the third dimension.

It is easy to see that the first three mappings lead to under-
utilization of the Z links while the X and Y links are heavily
used. Another noticeable pattern is that the first three mappings
lead to uneven distribution of traffic on links in a particular
direction. This is less noticeable for the tiltX mapping even
though there does exist some unevenness in the Z direction.
The tiltXY mapping is able to homogenize the traffic for any
given direction. Even though this mapping seems to now over-
utilize Z links (compared to tiltX) it improves performance.

D. Mapping on 8,192 cores

Rubik facilitates the process of generating mappings for
structured communication patterns. Each mapping can be
generated using a few lines of codes and they can be scaled up
easily to increased number of processors or higher dimensions.
Over the last month, we generated more than two hundred
mappings for pF3D using Rubik and tested all of them on
Blue Gene/P. Such an extensive exploration would have been
infeasible with mappings created by hand.

In Fig. 13, we present the results of twenty-five different
mappings that we tried for pF3d on 8,192 cores. The applica-
tion topology at this scale is a 16 � 8 � 64 and the network
topology is 8� 8� 32� 4. The mappings have been grouped
by the different operations that Rubik supports: tile, mod, tilt,
and hierarchical permutations. The data plotted is the average
messaging rate for one iteration of pF3D (a higher messaging
rate is better as it reflects a higher bandwidth utilization). This
plot shows that several of those operations can help achieve

TXYZ XYZT tile tiltX tiltXY X

Y

Y

Z

Z

X

76M

2M

Fig. 12: Two-dimensional projections of the 3D torus network. Each column displays the network traffic along the three directions, X , Y and Z for five
mappings of pF3D on 512 nodes: TXYZ, XYZT, tile, tiltX, tiltXY
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Fig. 11: Time spent in different MPI calls for five different mappings of a
16� 8� 16 pF3D grid to 512 nodes of Blue Gene/P

Fig. 11 shows the reduction in the time spent in MPI Send
and MPI Alltoall using each of these optimized mappings. The
XYZT mapping reduces the time spent in MPI Sends signifi-
cantly because inter-plane communication now happens on the
four cores of a node. Only every fourth application plane has
to communicate with its adjacent plane on another node. The
tile and tiltX mappings reduce the time for MPI Sends further
but increase the time taken for the all-to-alls compared to the
XYZT mapping. The twice-tilted tiltXY mapping reduces the
time spent in both (thus optimizing the intra- and inter-plane
communication). At 2048 cores, the communication is only
10% of the total execution time, hence the overall performance
improvements are not as significant. The iteration time for the
five mappings are 417.371, 407.158, 403.677, 403.959 and
403.813 seconds respectively.

To better understand the impact of mapping and routing on
the performance, we have collected network counter data for
all links of the torus for the five mappings described above (see

Fig. 12). We use a novel projection of the three-dimensional
network topology provided by Boxfish, an integrated perfor-
mance analysis and visualization tool we have developed. Each
image of Fig. 12 shows all network links along two torus
dimensions aggregated into bundles along the third dimension.

It is easy to see that the first three mappings lead to under-
utilization of the Z links while the X and Y links are heavily
used. Another noticeable pattern is that the first three mappings
lead to uneven distribution of traffic on links in a particular
direction. This is less noticeable for the tiltX mapping even
though there does exist some unevenness in the Z direction.
The tiltXY mapping is able to homogenize the traffic for any
given direction. Even though this mapping seems to now over-
utilize Z links (compared to tiltX) it improves performance.

D. Mapping on 8,192 cores

Rubik facilitates the process of generating mappings for
structured communication patterns. Each mapping can be
generated using a few lines of codes and they can be scaled up
easily to increased number of processors or higher dimensions.
Over the last month, we generated more than two hundred
mappings for pF3D using Rubik and tested all of them on
Blue Gene/P. Such an extensive exploration would have been
infeasible with mappings created by hand.

In Fig. 13, we present the results of twenty-five different
mappings that we tried for pF3d on 8,192 cores. The applica-
tion topology at this scale is a 16 � 8 � 64 and the network
topology is 8� 8� 32� 4. The mappings have been grouped
by the different operations that Rubik supports: tile, mod, tilt,
and hierarchical permutations. The data plotted is the average
messaging rate for one iteration of pF3D (a higher messaging
rate is better as it reflects a higher bandwidth utilization). This
plot shows that several of those operations can help achieve
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1000x1000 Matrix Multiply with different Blocking Optimizations 

512x512 Blocks 256x256 Blocks 
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LULESH 
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Messy Multigrid Trace 
•  With Real Time 

Same trace! 
•  With logical time steps 
•  Colors show lateness 




