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MOTIVATION: WHY CLOUDS FOR HPC ?  

 Rent vs. own, pay-as-you-go 

 No startup/maintenance cost, cluster create time 

 Elastic Resources 

 No risk e.g. in under-provisioning  

 Power savings, prevents underutilization 

 Benefits of virtualization 
 Flexibility and Customization  

 Security and Isolation 

 Migration 

 Resource Control 

 

 Hence, a cost-effective and timely solution  
 e.g. substitute/addition when Supercomputers are heavily 

loaded 
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MOTIVATION: HPC-CLOUD GAP  

 Today’s HPC not Cloud-aware, Clouds not HPC-aware! 

 Only embarrassingly parallel or small scale HPC apps run in 

Clouds 

 Typical Cloud interconnect, scheduler, heterogeneity, multi-

tenancy largest obstacles for HPC apps 
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HPC in Cloud 

Performance Evaluation Cost Evaluation 

Opportunities Challenges/Bottlenecks 

Poor Network 
Performance 

Commodity 
Interconnect 

Virtualization 
overhead 

Heterogeneity Multi-
tenancy 

VM 
consolidation 

Elasticity 
Virtualization - 
customization 

Pay-as-you-go/ 
rent vs. own 

Mapping 
 Applications to Platforms 

Application-Aware 
Cloud Schedulers 

Cloud Aware 
HPC Load Balancer 

Malleable Parallel Jobs 
(Runtime Shrink/Expand) 

Thin VMs/Containers 

Security 

MAPPING SCHEDULING/PLACEMENT 
HPC Aware Clouds 

EXECUTION 
Cloud Aware HPC 

Noise 



NEED FOR LOAD BALANCER FOR 

HPC IN CLOUD 
 Heterogeneity and multi-tenancy intrinsic in clouds 

 Heterogeneity: Cloud economics is based on: 

 Creation of a cluster from existing pool of resources and  

 Incremental addition of new resources.  

 Multi-tenancy: Cloud providers run a profitable business 

by improving utilization of underutilized resources 

 Cluster-level by serving large number of users,  

 Server-level by consolidating VMs of  complementary nature 

(such as memory- and compute-intensive) on same server.  

 Hence multi-tenancy can be at resource-level (memory, CPU), 

node-level, rack-level, zone-level, or data center level. 
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RESEARCH GOALS 

 Can we reduce the divide between HPC and Cloud? 

 Make Clouds HPC-aware 

 Make HPC cloud-aware 

 

 Address Heterogeneity, Multi-tenancy by adaptive 

runtime system  

 

 Challenge: Running in VMs makes it difficult to 

determine if (and how much of) the load imbalance is  

 Application-intrinsic or  

 Caused by extraneous factors.  6 



NEED FOR LOAD BALANCER FOR HPC IN 

CLOUD 

7 

Idle time 



CHARM++’S AND LOAD BALANCING! 

 Migratable objects 

 Mandatory for our scheme to work  

 Supports fault tolerance 

 Object-based over-decomposition 

 Helpful for refinement load balancing 

 Time logging for all objects 

 Central to load balancing decisions 

 Supports plugin load balancer 
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CLOUD-AWARE LOAD BALANCER 

FOR HPC 

 Static Heterogeneity: estimate the CPU capabilities 

for each VCPU, and use those estimates to drive the 

load balancing. 

 Simple estimation strategy + periodic refinement of 

load distribution 

 Dynamic Heterogeneity (Interfering VMs): Periodic 

object(task) redistribution 
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Background/ Interfering VM 

running on same host 

Objects  

(Work/Data Units) 

Load Balancer migrates 

objects from overloaded  

to under loaded VM 

Physical Host 1 Physical Host 2 

HPC VM1 HPC VM2 



CLOUD-AWARE LOAD BALANCER 

FOR HPC 

 Instrumenting the time spent on each task, 

 Predict future load based on the execution time of 

recently completed iterations. 

 Impact of interference: instrument the load 

external to the application under consideration, 

referred to as the background load 
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LOAD BALANCING APPROACH 

All processors should have 

load close to average load 

Average load depends on task 

execution time and overhead 

Overhead is the time processor is not 

executing tasks and not in idle mode. 

Charm++ load 

balancing 

database 

from /proc/stat 

file 
Tlb: wall clock time between two load balancing  steps,  

Ti: CPU time consumed by task i on VCPU p 

To get a processor-independent 

measure of task loads, normalize the 

execution times to number of ticks  



LOAD BALANCING APPROACH 

 After each user defined time interval 

 Categorize each VCPU as overloaded/underloaded 

 Create a heap of overloaded processors (H) 

 Create a set of underloaded processors (S) 

 Until H is not empty: 

 Transfer tasks from most overloaded processor from the H 

to any processor from S 

 The largest task currently placed on donor such that it can 

be transferred to a core from underloaded Set without 

overloading it  

 Update task mappings 



LOAD BALANCING APPROACH 



EVALUATION: EXPERIMENTAL TESTBED 

 OpenStack on Open Cirrus test bed at HP Labs site, 

3 types of servers: 

  Intel Xeon E5450 (12M Cache, 3.00 GHz) - Fast 

  Intel Xeon X3370 (12M Cache, 3.00 GHz) - Fast 

  Intel Xeon X3210 (8M Cache, 2.13 GHz) - Slow 

 KVM as hypervisor, virtio-net for n/w virtualization 

 VMs: m1.small (1 core, 2 GB RAM, 20 GB disk) 

 Connected using commodity Ethernet – 1Gbps 

internal to rack and 10Gbps cross-rack. 

 Pin the virtual cores to physical cores using 
vcpupin command. 
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BENCHMARKS AND APPLICATIONS 

 Stencil2D – 5-point stencil computation kernel 

 Wave2D – finite differencing to calculate pressure information over a 
discretized 2D grid, for simulation of a wave motion.  

 Mol3D – A 3-D molecular dynamics simulation application. We used the Apoa1 
dataset (92K atoms). 

 

  Written in Charm++ 
 net-linux-x86-64 machine layer 

 –O3 optimization level. 

 

 For Stencil2D, problem size 8K × 8K. For Wave2D, problem size 12K × 12K. 
Each object size is kept 256 × 256. 

 

Interference:  

 Sequential NPB-FT (NAS Parallel Benchmark - Fourier Transform) Class A as 
source of interference 

 Interfering VM pinned to one of the cores that the VMs of our parallel runs use 
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RESULTS: ANALYSIS USING STENCIL3D 
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RESULTS 
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RESULTS: EFFECT OF GRAIN SIZE 
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Stencil2d (8K × 8K) on 32 VMs (Fast processors, one interfering VM), 500 

iterations. For LB case, load balancing every 20 steps 

Lower is better 



RESULTS: EFFECT OF LB PERIOD 
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Stencil2d (8K × 8K) on 32 VMs (Fast processors, one interfering VM), 500 

iterations. Grain size of 256 × 256 

Lower is better 



RESULTS: EFFECT OF PROBLEM SIZE 
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Stencil2d on 32 VMs (Fast processors, one interfering VM), 500 iterations. 

Grain size of 256 × 256, load balancing every 20 steps 

Lower is better 



RESULTS: IMPROVEMENTS BY LB 
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(a) Interference - one interfering VM, all Fast nodes,  

(b) Heterogeneity – one Slow node, hence four Slow VMs, rest Fast 

(c) Heterogeneity and Interference – one Slow node, hence four Slow VMs, 

rest Fast, one interfering VM (on a Fast core) which starts at iteration 50. 

500 iterations for Stencil2D and Wave2D and 200 iterations for 

Mol3D, with load balancing every 20th step 



RESULTS: PARALLEL SCALING 
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RELATED WORK 
 Studies on HPC in cloud  

 Walker, He et al., Ekanayake et al., DoE’s Magellan project 

 Cloud can be potentially more cost-effective than supercomputers for some HPC 
applications 

 Challenges: insufficient network and I/O performance in cloud, resource 
heterogeneity, and unpredictable interference arising from other VMs. 

 

Bridging the gap between HPC and Cloud 

 Bring clouds closer to HPC 
 HPC-optimized clouds: Amazon Cluster Compute, DoE’s Magellan 

 HPC-aware cloud scheduler   
 Gupta et al.:   HPC Aware VM Placement in Infrastructure Clouds  

 OpenStack scheduler architecture-aware 

 

 Bring HPC closer to clouds. 
 Fan et al. proposed topology aware deployment of scientific applications in cloud, 

and mapped the communication topology of an HPC application to the VM 
physical topology 

 

 http://charm.cs.uiuc.edu/research/cloud 24 

http://charm.cs.uiuc.edu/research/cloud


LESSONS LEARNED 

 Heterogeneity-awareness: significant performance improvement for 
HPC in cloud.  

 Besides the static heterogeneity, multi-tenancy in cloud introduces 
dynamic heterogeneity, which is random and unpredictable.  
 Poor performance of tightly-coupled iterative HPC applications.  

 Even without the accurate information of the nature and amount of 
heterogeneity (static and dynamic but hidden from user as an artifact 
of virtualization), the approach of periodically measuring idle time and 
migrating load away from time-shared VMs works well in practice. 

 Tuning the parallel application for efficient execution in cloud is non-
trivial.  
 Choice of load balancing period and computational granularity can have 

significant impact on performance  

 Optimal values depend on application characteristics, size, and scale.  

 Runtime systems which can automate the selection and dynamic adjustment of 
such decisions will be increasingly useful in future.  
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CONCLUSIONS AND FUTURE WORK 

 A load balancing technique  

 Accounts for heterogeneity  

 Handles interfering VMs in cloud  

 Uses object migration to restore load balance.  

 Experimental results on actual cloud showed that we were able to 
reduce execution time by up to 45% compared to no load balancing 

 

Future Work 

 Extend our load balancer such that data migration is performed 
only if we expect gains that can offset the cost of migration. 

 Evaluate our techniques on a larger scale – on an actual cloud, if 
available in future, or through simulated or emulated 
environment. 

 Explore the use of VM steal cycles, where supported 
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