
IMPROVING HPC APPLICATION

PERFORMANCE IN CLOUD

THROUGH DYNAMIC LOAD BALANCING

Abhishek Gupta, Osman Sarood, Laxmikant V. Kale

Dejan Milojicic (HP labs)

04/15/2013

1

MOTIVATION: WHY CLOUDS FOR HPC ?

 Rent vs. own, pay-as-you-go

 No startup/maintenance cost, cluster create time

 Elastic Resources

 No risk e.g. in under-provisioning

 Power savings, prevents underutilization

 Benefits of virtualization
 Flexibility and Customization

 Security and Isolation

 Migration

 Resource Control

 Hence, a cost-effective and timely solution
 e.g. substitute/addition when Supercomputers are heavily

loaded

2

MOTIVATION: HPC-CLOUD GAP

 Today’s HPC not Cloud-aware, Clouds not HPC-aware!

 Only embarrassingly parallel or small scale HPC apps run in

Clouds

 Typical Cloud interconnect, scheduler, heterogeneity, multi-

tenancy largest obstacles for HPC apps

3

HPC in Cloud

Performance Evaluation Cost Evaluation

Opportunities Challenges/Bottlenecks

Poor Network
Performance

Commodity
Interconnect

Virtualization
overhead

Heterogeneity Multi-
tenancy

VM
consolidation

Elasticity
Virtualization -
customization

Pay-as-you-go/
rent vs. own

Mapping
 Applications to Platforms

Application-Aware
Cloud Schedulers

Cloud Aware
HPC Load Balancer

Malleable Parallel Jobs
(Runtime Shrink/Expand)

Thin VMs/Containers

Security

MAPPING SCHEDULING/PLACEMENT
HPC Aware Clouds

EXECUTION
Cloud Aware HPC

Noise

NEED FOR LOAD BALANCER FOR

HPC IN CLOUD
 Heterogeneity and multi-tenancy intrinsic in clouds

 Heterogeneity: Cloud economics is based on:

 Creation of a cluster from existing pool of resources and

 Incremental addition of new resources.

 Multi-tenancy: Cloud providers run a profitable business

by improving utilization of underutilized resources

 Cluster-level by serving large number of users,

 Server-level by consolidating VMs of complementary nature

(such as memory- and compute-intensive) on same server.

 Hence multi-tenancy can be at resource-level (memory, CPU),

node-level, rack-level, zone-level, or data center level.

5

RESEARCH GOALS

 Can we reduce the divide between HPC and Cloud?

 Make Clouds HPC-aware

 Make HPC cloud-aware

 Address Heterogeneity, Multi-tenancy by adaptive

runtime system

 Challenge: Running in VMs makes it difficult to

determine if (and how much of) the load imbalance is

 Application-intrinsic or

 Caused by extraneous factors. 6

NEED FOR LOAD BALANCER FOR HPC IN

CLOUD

7

Idle time

CHARM++’S AND LOAD BALANCING!

 Migratable objects

 Mandatory for our scheme to work

 Supports fault tolerance

 Object-based over-decomposition

 Helpful for refinement load balancing

 Time logging for all objects

 Central to load balancing decisions

 Supports plugin load balancer

8

CLOUD-AWARE LOAD BALANCER

FOR HPC

 Static Heterogeneity: estimate the CPU capabilities

for each VCPU, and use those estimates to drive the

load balancing.

 Simple estimation strategy + periodic refinement of

load distribution

 Dynamic Heterogeneity (Interfering VMs): Periodic

object(task) redistribution

9

Background/ Interfering VM

running on same host

Objects

(Work/Data Units)

Load Balancer migrates

objects from overloaded

to under loaded VM

Physical Host 1 Physical Host 2

HPC VM1 HPC VM2

CLOUD-AWARE LOAD BALANCER

FOR HPC

 Instrumenting the time spent on each task,

 Predict future load based on the execution time of

recently completed iterations.

 Impact of interference: instrument the load

external to the application under consideration,

referred to as the background load

11

LOAD BALANCING APPROACH

All processors should have

load close to average load

Average load depends on task

execution time and overhead

Overhead is the time processor is not

executing tasks and not in idle mode.

Charm++ load

balancing

database

from /proc/stat

file
Tlb: wall clock time between two load balancing steps,

Ti: CPU time consumed by task i on VCPU p

To get a processor-independent

measure of task loads, normalize the

execution times to number of ticks

LOAD BALANCING APPROACH

 After each user defined time interval

 Categorize each VCPU as overloaded/underloaded

 Create a heap of overloaded processors (H)

 Create a set of underloaded processors (S)

 Until H is not empty:

 Transfer tasks from most overloaded processor from the H

to any processor from S

 The largest task currently placed on donor such that it can

be transferred to a core from underloaded Set without

overloading it

 Update task mappings

LOAD BALANCING APPROACH

EVALUATION: EXPERIMENTAL TESTBED

 OpenStack on Open Cirrus test bed at HP Labs site,

3 types of servers:

 Intel Xeon E5450 (12M Cache, 3.00 GHz) - Fast

 Intel Xeon X3370 (12M Cache, 3.00 GHz) - Fast

 Intel Xeon X3210 (8M Cache, 2.13 GHz) - Slow

 KVM as hypervisor, virtio-net for n/w virtualization

 VMs: m1.small (1 core, 2 GB RAM, 20 GB disk)

 Connected using commodity Ethernet – 1Gbps

internal to rack and 10Gbps cross-rack.

 Pin the virtual cores to physical cores using
vcpupin command.

15

BENCHMARKS AND APPLICATIONS

 Stencil2D – 5-point stencil computation kernel

 Wave2D – finite differencing to calculate pressure information over a
discretized 2D grid, for simulation of a wave motion.

 Mol3D – A 3-D molecular dynamics simulation application. We used the Apoa1
dataset (92K atoms).

 Written in Charm++
 net-linux-x86-64 machine layer

 –O3 optimization level.

 For Stencil2D, problem size 8K × 8K. For Wave2D, problem size 12K × 12K.
Each object size is kept 256 × 256.

Interference:

 Sequential NPB-FT (NAS Parallel Benchmark - Fourier Transform) Class A as
source of interference

 Interfering VM pinned to one of the cores that the VMs of our parallel runs use

16

RESULTS: ANALYSIS USING STENCIL3D

17

RESULTS

18

RESULTS: EFFECT OF GRAIN SIZE

19

Stencil2d (8K × 8K) on 32 VMs (Fast processors, one interfering VM), 500

iterations. For LB case, load balancing every 20 steps

Lower is better

RESULTS: EFFECT OF LB PERIOD

20

Stencil2d (8K × 8K) on 32 VMs (Fast processors, one interfering VM), 500

iterations. Grain size of 256 × 256

Lower is better

RESULTS: EFFECT OF PROBLEM SIZE

21

Stencil2d on 32 VMs (Fast processors, one interfering VM), 500 iterations.

Grain size of 256 × 256, load balancing every 20 steps

Lower is better

RESULTS: IMPROVEMENTS BY LB

22

(a) Interference - one interfering VM, all Fast nodes,

(b) Heterogeneity – one Slow node, hence four Slow VMs, rest Fast

(c) Heterogeneity and Interference – one Slow node, hence four Slow VMs,

rest Fast, one interfering VM (on a Fast core) which starts at iteration 50.

500 iterations for Stencil2D and Wave2D and 200 iterations for

Mol3D, with load balancing every 20th step

RESULTS: PARALLEL SCALING

23

RELATED WORK
 Studies on HPC in cloud

 Walker, He et al., Ekanayake et al., DoE’s Magellan project

 Cloud can be potentially more cost-effective than supercomputers for some HPC
applications

 Challenges: insufficient network and I/O performance in cloud, resource
heterogeneity, and unpredictable interference arising from other VMs.

Bridging the gap between HPC and Cloud

 Bring clouds closer to HPC
 HPC-optimized clouds: Amazon Cluster Compute, DoE’s Magellan

 HPC-aware cloud scheduler
 Gupta et al.: HPC Aware VM Placement in Infrastructure Clouds

 OpenStack scheduler architecture-aware

 Bring HPC closer to clouds.
 Fan et al. proposed topology aware deployment of scientific applications in cloud,

and mapped the communication topology of an HPC application to the VM
physical topology

 http://charm.cs.uiuc.edu/research/cloud 24

http://charm.cs.uiuc.edu/research/cloud

LESSONS LEARNED

 Heterogeneity-awareness: significant performance improvement for
HPC in cloud.

 Besides the static heterogeneity, multi-tenancy in cloud introduces
dynamic heterogeneity, which is random and unpredictable.
 Poor performance of tightly-coupled iterative HPC applications.

 Even without the accurate information of the nature and amount of
heterogeneity (static and dynamic but hidden from user as an artifact
of virtualization), the approach of periodically measuring idle time and
migrating load away from time-shared VMs works well in practice.

 Tuning the parallel application for efficient execution in cloud is non-
trivial.
 Choice of load balancing period and computational granularity can have

significant impact on performance

 Optimal values depend on application characteristics, size, and scale.

 Runtime systems which can automate the selection and dynamic adjustment of
such decisions will be increasingly useful in future.

25

CONCLUSIONS AND FUTURE WORK

 A load balancing technique

 Accounts for heterogeneity

 Handles interfering VMs in cloud

 Uses object migration to restore load balance.

 Experimental results on actual cloud showed that we were able to
reduce execution time by up to 45% compared to no load balancing

Future Work

 Extend our load balancer such that data migration is performed
only if we expect gains that can offset the cost of migration.

 Evaluate our techniques on a larger scale – on an actual cloud, if
available in future, or through simulated or emulated
environment.

 Explore the use of VM steal cycles, where supported
26

ACKNOWLEDGEMENTS

 This work was supported by HP Labs’ 2012 IRP award

27

