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Multiple runs required to observe and decide
Tough to judge the correct load balancing parameters

Dynamic applications require dynamic load balancing
decisions

Some phases may need frequent load balancing, others may be
static
Computation to communication ratio may change
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Meta-Balancer

Charm++ RTS monitors applications

Computation and communication per chare is maintained
RTS maintains and controls the placement of chares

Charm++ RTS is aware of the system characteristics

Offload the load balancing related decision making to
Charm++ RTS

Meta-Balancer makes load balancing decisions without any
user involvement
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Decisions in Meta-Balancer

Frequency of load balancing

Adaptive triggering of load balancing

Strategy Selection

Communication vs Computation strategy

Comprehensive vs Refinement strategy
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Existing Framework

User decides LB frequency and strategy

Control flow

1 AtSync called whenever load balancing is to be performed in
the application

2 RTS enforces a chare level local barrier within every processor
3 Global barrier to collect statistics
4 Execute load balancing strategy and perform migration
5 Application resumes
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Meta-Balancer

Lifecycle

Periodically during an application run

1 Every processor contributes its statistics

2 Based on the statistics collected, the central processor (root)

Finds the ideal LB period and informs other processors
If immediate LB required, informs other processors

3 During load balancing, root decides the LB strategy

11 / 29



Metabalancer

Meta-Balancer

Lifecycle

Periodically during an application run

1 Every processor contributes its statistics

2 Based on the statistics collected, the central processor (root)

Finds the ideal LB period and informs other processors
If immediate LB required, informs other processors

3 During load balancing, root decides the LB strategy

11 / 29



Metabalancer

Meta-Balancer

Lifecycle

Periodically during an application run

1 Every processor contributes its statistics

2 Based on the statistics collected, the central processor (root)

Finds the ideal LB period and informs other processors
If immediate LB required, informs other processors

3 During load balancing, root decides the LB strategy

11 / 29



Metabalancer

Meta-Balancer

Lifecycle

Periodically during an application run

1 Every processor contributes its statistics

2 Based on the statistics collected, the central processor (root)

Finds the ideal LB period and informs other processors
If immediate LB required, informs other processors

3 During load balancing, root decides the LB strategy

11 / 29



Metabalancer

Meta-Balancer

Statistics Collection

Asynchronous Collection of Stats via Reduction

Statistics are collected via reduction periodically and
frequently

Collection has to be asynchronous - presence of a frequent
local and global barrier results in substantial overheads

Only minimal statistics are collected via custom reduction in
Charm++

Maximum load - max reducer over all processor’s load
Average load - sum reducer over all processor’s load
Minimum Utilization - min reducer over all processor’s
utilization (ratio of busy time and total time)
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Ideal LB Period

Load balancing removes load imbalance, but causes following
overheads:

Data collection and strategy cost
Migration cost

Optimal performance obtained if load balancing is performed
at an ideal period

Gains obtained from load balancing is maximized despite the
incurred overheads.
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Assuming,
τ - ideal LB period, γ - total iterations
Γ - execution time, θ - cost of LB
y = ax + ca - average load line equation
y = mx + cm - maximum load w.r.t average load

We obtain total execution time as
Γ = γ

τ × (
∫ τ
0 (mx + cm)dx + θ) +

∫ γ
0 (ax + ca)dx

Differentiating the above, following LB period is obtained for
minimum execution time

τ =
√

2θ
m
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LB Period Augmentations

When the root informs the LB period, some chares may have
gone beyond it

Consensus mechanism to detect such cases, and decide the
new LB period

As application characteristic changes, LB period may change

Capability to refine (expand and contract) LB period if possible

If prediction and statistics collected do not match, immediate
trigger if required
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Communication vs Computation

Applications can be communication bound, computationally
intensive, or a mixture of two

Meta-Balancer uses αβ cost of an application to identify if it
is communication intensive, which consist of two components:

1 α cost - start up cost of the messages sent

2 β cost - bandwidth cost of bytes sent
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Strategy Selection

Refine vs Comprehensive

First time load balancing uses comprehensive load balancers

Thereafter, refinement strategies are invoked unless history
shows poor quality of refinement based strategies
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Load imbalance affects performance and scalability of an
application

Leaving it to the application programmer to manually handle
this imbalance in a dynamic application is unreasonable and
inefficient

Meta-Balancer relieves the user from load balancing decisions
by

Frequently collecting minimal statistics about the application
Controlling the load balancing decision based on the
application characteristics
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Hierarchical vs Centralized
Topology-aware vs topology oblivious

More accurate prediction of load - higher order curves
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