
Metabalancer

MetaBalancer: An automatic load balancer based
on application characteristics

Harshitha Menon

UIUC

7th May, 2012

1 / 29

Metabalancer

Outline

1 Motivation

2 Meta-Balancer: Overview

3 Load Balancer: Existing Framework

4 Meta-Balancer
Statistics Collection
Ideal LB Period
Strategy Selection

5 Conclusion

6 Future Work

2 / 29

Metabalancer

Motivation

Outline

1 Motivation

2 Meta-Balancer: Overview

3 Load Balancer: Existing Framework

4 Meta-Balancer
Statistics Collection
Ideal LB Period
Strategy Selection

5 Conclusion

6 Future Work

3 / 29

Metabalancer

Motivation

Motivation

Load balancing decisions depend on application

Multiple runs required to observe and decide
Tough to judge the correct load balancing parameters

Dynamic applications require dynamic load balancing
decisions

Some phases may need frequent load balancing, others may be
static
Computation to communication ratio may change

4 / 29

Metabalancer

Motivation

Motivation

Load balancing decisions depend on application

Multiple runs required to observe and decide
Tough to judge the correct load balancing parameters

Dynamic applications require dynamic load balancing
decisions

Some phases may need frequent load balancing, others may be
static
Computation to communication ratio may change

4 / 29

Metabalancer

Meta-Balancer: Overview

Outline

1 Motivation

2 Meta-Balancer: Overview

3 Load Balancer: Existing Framework

4 Meta-Balancer
Statistics Collection
Ideal LB Period
Strategy Selection

5 Conclusion

6 Future Work

5 / 29

Metabalancer

Meta-Balancer: Overview

Meta-Balancer

Charm++ RTS monitors applications

Computation and communication per chare is maintained
RTS maintains and controls the placement of chares

Charm++ RTS is aware of the system characteristics

Offload the load balancing related decision making to
Charm++ RTS

Meta-Balancer makes load balancing decisions without any
user involvement

6 / 29

Metabalancer

Meta-Balancer: Overview

Meta-Balancer

Charm++ RTS monitors applications

Computation and communication per chare is maintained
RTS maintains and controls the placement of chares

Charm++ RTS is aware of the system characteristics

Offload the load balancing related decision making to
Charm++ RTS

Meta-Balancer makes load balancing decisions without any
user involvement

6 / 29

Metabalancer

Meta-Balancer: Overview

Meta-Balancer

Charm++ RTS monitors applications

Computation and communication per chare is maintained
RTS maintains and controls the placement of chares

Charm++ RTS is aware of the system characteristics

Offload the load balancing related decision making to
Charm++ RTS

Meta-Balancer makes load balancing decisions without any
user involvement

6 / 29

Metabalancer

Meta-Balancer: Overview

Decisions in Meta-Balancer

Frequency of load balancing

Adaptive triggering of load balancing

Strategy Selection

Communication vs Computation strategy

Comprehensive vs Refinement strategy

7 / 29

Metabalancer

Meta-Balancer: Overview

Decisions in Meta-Balancer

Frequency of load balancing

Adaptive triggering of load balancing

Strategy Selection

Communication vs Computation strategy

Comprehensive vs Refinement strategy

7 / 29

Metabalancer

Meta-Balancer: Overview

Decisions in Meta-Balancer

Frequency of load balancing

Adaptive triggering of load balancing

Strategy Selection

Communication vs Computation strategy

Comprehensive vs Refinement strategy

7 / 29

Metabalancer

Load Balancer: Existing Framework

Outline

1 Motivation

2 Meta-Balancer: Overview

3 Load Balancer: Existing Framework

4 Meta-Balancer
Statistics Collection
Ideal LB Period
Strategy Selection

5 Conclusion

6 Future Work

8 / 29

Metabalancer

Load Balancer: Existing Framework

Existing Framework

User decides LB frequency and strategy

Control flow

1 AtSync called whenever load balancing is to be performed in
the application

2 RTS enforces a chare level local barrier within every processor
3 Global barrier to collect statistics
4 Execute load balancing strategy and perform migration
5 Application resumes

9 / 29

Metabalancer

Load Balancer: Existing Framework

Existing Framework

User decides LB frequency and strategy

Control flow

1 AtSync called whenever load balancing is to be performed in
the application

2 RTS enforces a chare level local barrier within every processor
3 Global barrier to collect statistics

4 Execute load balancing strategy and perform migration
5 Application resumes

9 / 29

Metabalancer

Load Balancer: Existing Framework

Existing Framework

User decides LB frequency and strategy

Control flow

1 AtSync called whenever load balancing is to be performed in
the application

2 RTS enforces a chare level local barrier within every processor
3 Global barrier to collect statistics
4 Execute load balancing strategy and perform migration
5 Application resumes

9 / 29

Metabalancer

Meta-Balancer

Outline

1 Motivation

2 Meta-Balancer: Overview

3 Load Balancer: Existing Framework

4 Meta-Balancer
Statistics Collection
Ideal LB Period
Strategy Selection

5 Conclusion

6 Future Work

10 / 29

Metabalancer

Meta-Balancer

Lifecycle

Periodically during an application run

1 Every processor contributes its statistics

2 Based on the statistics collected, the central processor (root)

Finds the ideal LB period and informs other processors
If immediate LB required, informs other processors

3 During load balancing, root decides the LB strategy

11 / 29

Metabalancer

Meta-Balancer

Lifecycle

Periodically during an application run

1 Every processor contributes its statistics

2 Based on the statistics collected, the central processor (root)

Finds the ideal LB period and informs other processors
If immediate LB required, informs other processors

3 During load balancing, root decides the LB strategy

11 / 29

Metabalancer

Meta-Balancer

Lifecycle

Periodically during an application run

1 Every processor contributes its statistics

2 Based on the statistics collected, the central processor (root)

Finds the ideal LB period and informs other processors
If immediate LB required, informs other processors

3 During load balancing, root decides the LB strategy

11 / 29

Metabalancer

Meta-Balancer

Lifecycle

Periodically during an application run

1 Every processor contributes its statistics

2 Based on the statistics collected, the central processor (root)

Finds the ideal LB period and informs other processors
If immediate LB required, informs other processors

3 During load balancing, root decides the LB strategy

11 / 29

Metabalancer

Meta-Balancer

Statistics Collection

Asynchronous Collection of Stats via Reduction

Statistics are collected via reduction periodically and
frequently

Collection has to be asynchronous - presence of a frequent
local and global barrier results in substantial overheads

Only minimal statistics are collected via custom reduction in
Charm++

Maximum load - max reducer over all processor’s load
Average load - sum reducer over all processor’s load
Minimum Utilization - min reducer over all processor’s
utilization (ratio of busy time and total time)

12 / 29

Metabalancer

Meta-Balancer

Statistics Collection

Asynchronous Collection of Stats via Reduction

Statistics are collected via reduction periodically and
frequently

Collection has to be asynchronous - presence of a frequent
local and global barrier results in substantial overheads

Only minimal statistics are collected via custom reduction in
Charm++

Maximum load - max reducer over all processor’s load
Average load - sum reducer over all processor’s load
Minimum Utilization - min reducer over all processor’s
utilization (ratio of busy time and total time)

12 / 29

Metabalancer

Meta-Balancer

Statistics Collection

Asynchronous Collection of Stats via Reduction

a1 b1 a2 b2

c1 d2c2 d1

e1 e2 e3 e4

Stats Red 1

c3

e11 e12 e13

a9 b10

c8 d7

ROOT

PE0

PE1

PE2

Stats Red 2

13 / 29

Metabalancer

Meta-Balancer

Ideal LB Period

Ideal LB Period

Load balancing removes load imbalance, but causes following
overheads:

Data collection and strategy cost
Migration cost

Optimal performance obtained if load balancing is performed
at an ideal period

Gains obtained from load balancing is maximized despite the
incurred overheads.

14 / 29

Metabalancer

Meta-Balancer

Ideal LB Period

Ideal LB Period

Load balancing removes load imbalance, but causes following
overheads:

Data collection and strategy cost
Migration cost

Optimal performance obtained if load balancing is performed
at an ideal period

Gains obtained from load balancing is maximized despite the
incurred overheads.

14 / 29

Metabalancer

Meta-Balancer

Ideal LB Period

Ideal LB Period

Assuming,
τ - ideal LB period, γ - total iterations
Γ - execution time, θ - cost of LB
y = ax + ca - average load line equation
y = mx + cm - maximum load w.r.t average load

We obtain total execution time as
Γ = γ

τ × (
∫ τ
0 (mx + cm)dx + θ) +

∫ γ
0 (ax + ca)dx

Differentiating the above, following LB period is obtained for
minimum execution time

τ =
√

2θ
m

15 / 29

Metabalancer

Meta-Balancer

Ideal LB Period

Ideal LB Period

Assuming,
τ - ideal LB period, γ - total iterations
Γ - execution time, θ - cost of LB
y = ax + ca - average load line equation
y = mx + cm - maximum load w.r.t average load

We obtain total execution time as
Γ = γ

τ × (
∫ τ
0 (mx + cm)dx + θ) +

∫ γ
0 (ax + ca)dx

Differentiating the above, following LB period is obtained for
minimum execution time

τ =
√

2θ
m

15 / 29

Metabalancer

Meta-Balancer

Ideal LB Period

Ideal LB Period

Assuming,
τ - ideal LB period, γ - total iterations
Γ - execution time, θ - cost of LB
y = ax + ca - average load line equation
y = mx + cm - maximum load w.r.t average load

We obtain total execution time as
Γ = γ

τ × (
∫ τ
0 (mx + cm)dx + θ) +

∫ γ
0 (ax + ca)dx

Differentiating the above, following LB period is obtained for
minimum execution time

τ =
√

2θ
m

15 / 29

Metabalancer

Meta-Balancer

Ideal LB Period

Results: Jacobi2D

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300 350 400

El
ap

se
d

tim
e

(s
)

LB Period

Elapsed time vs LB Period

elapsed time

16 / 29

Metabalancer

Meta-Balancer

Ideal LB Period

Results: Jacobi2D

 0.016
 0.017
 0.018
 0.019
 0.02

 0.021
 0.022
 0.023
 0.024
 0.025

 0 50 100 150 200 250 300 350 400

B
en

ch
m

ar
k

tim
e

(s
)

Iterations

jacobi2D

average load
maxmum load

17 / 29

Metabalancer

Meta-Balancer

Ideal LB Period

LB Period Augmentations

When the root informs the LB period, some chares may have
gone beyond it

Consensus mechanism to detect such cases, and decide the
new LB period

As application characteristic changes, LB period may change

Capability to refine (expand and contract) LB period if possible

If prediction and statistics collected do not match, immediate
trigger if required

18 / 29

Metabalancer

Meta-Balancer

Ideal LB Period

LB Period Augmentations

When the root informs the LB period, some chares may have
gone beyond it

Consensus mechanism to detect such cases, and decide the
new LB period

As application characteristic changes, LB period may change

Capability to refine (expand and contract) LB period if possible

If prediction and statistics collected do not match, immediate
trigger if required

18 / 29

Metabalancer

Meta-Balancer

Ideal LB Period

LB Period Augmentations

When the root informs the LB period, some chares may have
gone beyond it

Consensus mechanism to detect such cases, and decide the
new LB period

As application characteristic changes, LB period may change

Capability to refine (expand and contract) LB period if possible

If prediction and statistics collected do not match, immediate
trigger if required

18 / 29

Metabalancer

Meta-Balancer

Strategy Selection

Communication vs Computation

Applications can be communication bound, computationally
intensive, or a mixture of two

Meta-Balancer uses αβ cost of an application to identify if it
is communication intensive, which consist of two components:

1 α cost - start up cost of the messages sent

2 β cost - bandwidth cost of bytes sent

19 / 29

Metabalancer

Meta-Balancer

Strategy Selection

Communication vs Computation

Applications can be communication bound, computationally
intensive, or a mixture of two

Meta-Balancer uses αβ cost of an application to identify if it
is communication intensive, which consist of two components:

1 α cost - start up cost of the messages sent

2 β cost - bandwidth cost of bytes sent

19 / 29

Metabalancer

Meta-Balancer

Strategy Selection

Communication vs Computation

Applications can be communication bound, computationally
intensive, or a mixture of two

Meta-Balancer uses αβ cost of an application to identify if it
is communication intensive, which consist of two components:

1 α cost - start up cost of the messages sent

2 β cost - bandwidth cost of bytes sent

19 / 29

Metabalancer

Meta-Balancer

Strategy Selection

Refine vs Comprehensive

First time load balancing uses comprehensive load balancers

Thereafter, refinement strategies are invoked unless history
shows poor quality of refinement based strategies

20 / 29

Metabalancer

Meta-Balancer

Strategy Selection

Refine vs Comprehensive

First time load balancing uses comprehensive load balancers

Thereafter, refinement strategies are invoked unless history
shows poor quality of refinement based strategies

20 / 29

Metabalancer

Meta-Balancer

Strategy Selection

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 0 100 200 300 400 500 600 700 800 900 1000

Lo
ad

 (s
)

Iterations

leanmd

average load
maximum load

Figure: leanmd mini-application

21 / 29

Metabalancer

Meta-Balancer

Strategy Selection

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400

R
at

io

Iterations

kNeighbor Communication Intensive

imbalance ratio (max/avg)
idle/load

Figure: kNeighbor with high communication

22 / 29

Metabalancer

Meta-Balancer

Strategy Selection

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0 50 100 150 200 250 300 350 400

Lo
ad

 (s
)

Iterations

kNeighbor

average load
maximum load

Figure: Dynamic triggering of LB for kNeighbor

23 / 29

Metabalancer

Meta-Balancer

Strategy Selection

Overall Scheme

Lot of idle
time

load
imbalance

No LB Comm LB

N

N Y

Y

Y ∝𝓑cost first time Y
Comprehensive

strategyN

high imb

N

Y

good
comprehensive

lb

Y
N

good
Refine LB N

Y

RefineLB

N

start

LB Strategy Selection

Figure: Flowchart describing strategy selection

24 / 29

Metabalancer

Conclusion

Outline

1 Motivation

2 Meta-Balancer: Overview

3 Load Balancer: Existing Framework

4 Meta-Balancer
Statistics Collection
Ideal LB Period
Strategy Selection

5 Conclusion

6 Future Work

25 / 29

Metabalancer

Conclusion

Conclusion

Load imbalance affects performance and scalability of an
application

Leaving it to the application programmer to manually handle
this imbalance in a dynamic application is unreasonable and
inefficient

Meta-Balancer relieves the user from load balancing decisions
by

Frequently collecting minimal statistics about the application
Controlling the load balancing decision based on the
application characteristics

26 / 29

Metabalancer

Conclusion

Conclusion

Load imbalance affects performance and scalability of an
application

Leaving it to the application programmer to manually handle
this imbalance in a dynamic application is unreasonable and
inefficient

Meta-Balancer relieves the user from load balancing decisions
by

Frequently collecting minimal statistics about the application
Controlling the load balancing decision based on the
application characteristics

26 / 29

Metabalancer

Future Work

Outline

1 Motivation

2 Meta-Balancer: Overview

3 Load Balancer: Existing Framework

4 Meta-Balancer
Statistics Collection
Ideal LB Period
Strategy Selection

5 Conclusion

6 Future Work

27 / 29

Metabalancer

Future Work

Future Work

Expand strategy selection

Hierarchical vs Centralized
Topology-aware vs topology oblivious

More accurate prediction of load - higher order curves

28 / 29

Metabalancer

Future Work

Future Work

Expand strategy selection

Hierarchical vs Centralized
Topology-aware vs topology oblivious

More accurate prediction of load - higher order curves

28 / 29

Metabalancer

Future Work

Thank You!

29 / 29

	Motivation
	Meta-Balancer: Overview
	Load Balancer: Existing Framework
	Meta-Balancer
	Statistics Collection
	Ideal LB Period
	Strategy Selection

	Conclusion
	Future Work

