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Sparse Triangular Solution 

¨  Used in solution of linear systems, least squares 
¤ Many times iteratively  

¨  Direct methods (after factorization) 
¤ many right-hand sides 
¤ Refinement of solution 

¨  Iterative methods 
¤ kernel in Gauss-Seidel method 
¤ Preconditioners 

n E.g. Incomplete-Cholesky before Conjugate Gradient 



Poor Parallelism 

¨  Minimal concurrency 
¤ Lots of structural dependencies 

¨  Small work per data 
¤ Just one multiply-add for most entries! 

¨  Sparse: Some parallelism 

sequential kernels to be used (although not evaluated here).
We describe our implementation in CHARM++[12] and

discuss the possible implementation in MPI. We believe that
many features of CHARM++, such as virtualization, make
the implementation easier and enhance performance. We use
several matrices from real applications (University of Florida
Sparse Matrix Collection [13]) to evaluate our implementation
on up to 512 cores of BlueGene/P. The matrices are fairly
small relative to the number of processors used, so they
illustrate the strong scaling of our algorithm. We compare
our results with triangular solvers in the HYPRE [11] and
SuperLU [4] packages to show the superiority of our algorithm
to current standards.

II. PARALLELISM IN SPARSE TRIANGULAR SOLUTION

In this section, we use examples to illustrate various op-
portunities for parallelism that we exploit in our algorithm.
Computation of the solution vector x to an n × n lower
triangular system Lx = b using forward substitution can be
expressed by the recurrence

xi = (bi −
i−1�

j=1

lij xj)/lii, i = 1, . . . , n.

For a dense matrix, computation of each solution component
xi depends on all previous components xj , j < i. For a
sparse matrix, however, most of the matrix entries are zero,
so that computation of xi may depend on only a few previous
components, and it may not be necessary to compute the
solution components in strict sequential order. For example,
Figure 1 shows a sparse lower triangular system for which the
computation of x8 depends only on x1, so x8 can be computed
as soon as x1 has been computed, without having to await the
availability of x2, . . . , x7. Similarly, computation of x3, x6,
and x9 can be done immediately and concurrently, as they
depend on no previous components. These dependencies are
conveniently described in terms of matrix rows: we say that
row i depends on row j for j < i if lij �= 0. Similarly, we say
that row i is independent if lij = 0 for all j < i. We can also
conveniently describe the progress of the algorithm in terms
of operations involving the nonzero entries of L, since each
is touched exactly once.

Continuing with our example, assume that the columns of L
are divided among three processors (P1, P2, P3) in blocks, as
shown by the color coded diagonal blocks (blue, green, gray)
in Figure 1. Nonzeros below the diagonal blocks are colored
red. If each processor waits for all the required data, then
processes its rows in increasing order and sends the resulting
data afterwards, then we have the following scenario. P2 and
P3 wait while P1 processes all its rows in order, then sends the
result from l43 to P2 and the result from l81 to P3. P2 can now
process its rows while P3 still waits. After P2 finishes, P3 now
has all the required data and performs its computation. Thus,
all work is done sequentially among processors and there is no
overlap. Some overlap could be achieved by having P1 send
the result from l43 before processing row eight, so that P2 can

start its computation earlier. But sending data as they become
available allows only limited overlap.

However, there is another source of parallelism in this
example. Row 3 is independent, since it has no nonzeros in
the first two columns. Thus, x3 can be computed immediately
by P1 and sent to P2 earlier than x2. P1 can then process
l43 and send the result to P2. In this way, P1 and P2 can do
most of their computations in parallel. The same idea can be
applied to processing of l76 and l81, and more concurrency is
created.

To exploit independent rows, they could be permuted to
the top within their block, as shown in Figure 2, and then
all rows are processed in order, or the row processing could
be reordered without explicit permutation of the matrix. In
either case, in our example rows 3, 6, and 9 can be completed
concurrently. P1 then processes l43, sends the result to P2,
processes row 1 (in the original row order), sends the result
from l81 to P3, and finally completes row 2. Similarly, P2
first processes row 6, sends the result from l76 to P3, receives
necessary data from P1, and then processes its remaining rows.
P3 can process row 9 immediately, but must await data from
P1 and P2 before processing its other rows.
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Fig. 2. Reordering rows of sparse matrix example 1.

This idea applies to some practical cases, but may not
provide any benefit for others. For example, Figure 3 shows
a matrix with its diagonal and subdiagonal full of nonzeros,
which implies a chain of dependencies between rows, and the
computation is essentially sequential.
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Fig. 3. Sparse matrix example 2.

Our previous example matrices had most of their nonzeros
on or near the diagonal. Matrices from various applications
have a wider variety of nonzero structures and properties.



Poor Parallelism 

¨  Slower than sequential! 
¤ HYPRE and SuperLU_DIST 
¤ Some progress in shared-memory 

¨  Has to be done in parallel 
¤ Matrix is already distributed 

n E.g. by factorization 

¤ Memory is constrained 

¨  Bottle-neck of many methods 



Basics Approach 
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Fig. 1. Sparse matrix example 1.

Another common case that may provide opportunities for
parallelism is having some denser regions below the diagonal
block. Figure 4 shows an example with a dense region in the
lower left corner. If we divide that region among two additional
processors (P4 and P5), they can work on their data as soon
as they receive the required solution components. In this
approach, P1 broadcasts the vector x(1..3) to P4 and P5 after it
is calculated. P4 and P5 then complete their computations and
send the results for rows 8 and 9 to P3. For good efficiency,
there should be sufficiently many entries in the region to justify
the communication and other overhead.
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Fig. 4. Sparse matrix example 3.

These three strategies — sending data earlier to achieve
greater overlap, identifying independent rows, and parallel
processing of dense offdiagonal regions — are the bases for
our algorithm.

III. PARALLEL TRIANGULAR SOLUTION ALGORITHM

We now describe our sparse triangular solution algorithm
in greater detail. Algorithm 1 gives a high-level view of
our method. We assume that the basic units of parallelism
are blocks of columns, which are distributed in round-robin
fashion among processors for better load balance. We also
assume that each block is stored in a format that allows easy
access to the rows, such as compressed sparse row format.
The rows of each diagonal block are first reordered for better
parallelism by identifying independent rows, as described in
Algorithm 2. Next, the nonzeros below the diagonal block
are inspected for various structural properties. If there are
“many” nonzeros below the diagonal, they are packed into
new blocks and sent to other processors. Here, “many” means

that the communication and other overheads are justified by
the computation in the block, and this presents a parameter
to tune. In our implementation, if the nonzeros are more than
some constant (20 seems to work well) times the size of the
solution subvector, we send the block to another processor.
After this precomputation is done, we can start solving the
system (described in Algorithm 4), possibly multiple times,
as may be needed.

Algorithm: ParallelSolve
// Matrix columns distributed to

processors round-robin in blocks
Input: Row myRows[]
Output: x[], solution of sparse triangular system
// We know which rows depend on other

blocks
reorderDiagonalBlock(myRows)
inspectBelowDiagonalBlock(myRows)
if many nonzeros below diagonal block then

create new blocks and send to other processors
end

while more iterations needed do

triangularSolve(myRows)
end

Algorithm 1: Parallel Solution of Triangular System

Algorithm 2 describes the reordering step, in which indepen-
dent rows are identified so that they can be computed without
any data required from other blocks. Independent row in the
diagonal block means that it has no nonzero to the left of
the block, and it does not depend on any dependent row. For
instance, l66 of Figure 1 is independent because it has no
nonzero to the left. On the other hand, row 5 is dependent;
it has no nonzero to the left of the block, but it depends on
the fourth row through l54. The first loop finds and marks
any dependent rows. The second loop places the independent
rows on a new buffer in backward order. We reverse the
order of independent rows, in the hope of computing the
dependencies of subsequent blocks sooner. This heuristic has
enhanced performance significantly in our test results.

The PlaceRow routine described in Algorithm 3 inspects all
the nonzeros of a given row to make sure that the needed rows

P1 P2 P3 



Basic Approach-Reordering 

sequential kernels to be used (although not evaluated here).
We describe our implementation in CHARM++[12] and

discuss the possible implementation in MPI. We believe that
many features of CHARM++, such as virtualization, make
the implementation easier and enhance performance. We use
several matrices from real applications (University of Florida
Sparse Matrix Collection [13]) to evaluate our implementation
on up to 512 cores of BlueGene/P. The matrices are fairly
small relative to the number of processors used, so they
illustrate the strong scaling of our algorithm. We compare
our results with triangular solvers in the HYPRE [11] and
SuperLU [4] packages to show the superiority of our algorithm
to current standards.

II. PARALLELISM IN SPARSE TRIANGULAR SOLUTION

In this section, we use examples to illustrate various op-
portunities for parallelism that we exploit in our algorithm.
Computation of the solution vector x to an n × n lower
triangular system Lx = b using forward substitution can be
expressed by the recurrence

xi = (bi −
i−1�

j=1

lij xj)/lii, i = 1, . . . , n.

For a dense matrix, computation of each solution component
xi depends on all previous components xj , j < i. For a
sparse matrix, however, most of the matrix entries are zero,
so that computation of xi may depend on only a few previous
components, and it may not be necessary to compute the
solution components in strict sequential order. For example,
Figure 1 shows a sparse lower triangular system for which the
computation of x8 depends only on x1, so x8 can be computed
as soon as x1 has been computed, without having to await the
availability of x2, . . . , x7. Similarly, computation of x3, x6,
and x9 can be done immediately and concurrently, as they
depend on no previous components. These dependencies are
conveniently described in terms of matrix rows: we say that
row i depends on row j for j < i if lij �= 0. Similarly, we say
that row i is independent if lij = 0 for all j < i. We can also
conveniently describe the progress of the algorithm in terms
of operations involving the nonzero entries of L, since each
is touched exactly once.

Continuing with our example, assume that the columns of L
are divided among three processors (P1, P2, P3) in blocks, as
shown by the color coded diagonal blocks (blue, green, gray)
in Figure 1. Nonzeros below the diagonal blocks are colored
red. If each processor waits for all the required data, then
processes its rows in increasing order and sends the resulting
data afterwards, then we have the following scenario. P2 and
P3 wait while P1 processes all its rows in order, then sends the
result from l43 to P2 and the result from l81 to P3. P2 can now
process its rows while P3 still waits. After P2 finishes, P3 now
has all the required data and performs its computation. Thus,
all work is done sequentially among processors and there is no
overlap. Some overlap could be achieved by having P1 send
the result from l43 before processing row eight, so that P2 can

start its computation earlier. But sending data as they become
available allows only limited overlap.

However, there is another source of parallelism in this
example. Row 3 is independent, since it has no nonzeros in
the first two columns. Thus, x3 can be computed immediately
by P1 and sent to P2 earlier than x2. P1 can then process
l43 and send the result to P2. In this way, P1 and P2 can do
most of their computations in parallel. The same idea can be
applied to processing of l76 and l81, and more concurrency is
created.

To exploit independent rows, they could be permuted to
the top within their block, as shown in Figure 2, and then
all rows are processed in order, or the row processing could
be reordered without explicit permutation of the matrix. In
either case, in our example rows 3, 6, and 9 can be completed
concurrently. P1 then processes l43, sends the result to P2,
processes row 1 (in the original row order), sends the result
from l81 to P3, and finally completes row 2. Similarly, P2
first processes row 6, sends the result from l76 to P3, receives
necessary data from P1, and then processes its remaining rows.
P3 can process row 9 immediately, but must await data from
P1 and P2 before processing its other rows.
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Fig. 2. Reordering rows of sparse matrix example 1.

This idea applies to some practical cases, but may not
provide any benefit for others. For example, Figure 3 shows
a matrix with its diagonal and subdiagonal full of nonzeros,
which implies a chain of dependencies between rows, and the
computation is essentially sequential.
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Fig. 3. Sparse matrix example 2.

Our previous example matrices had most of their nonzeros
on or near the diagonal. Matrices from various applications
have a wider variety of nonzero structures and properties.

Independent rows 
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Dense Regions 
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Fig. 1. Sparse matrix example 1.

Another common case that may provide opportunities for
parallelism is having some denser regions below the diagonal
block. Figure 4 shows an example with a dense region in the
lower left corner. If we divide that region among two additional
processors (P4 and P5), they can work on their data as soon
as they receive the required solution components. In this
approach, P1 broadcasts the vector x(1..3) to P4 and P5 after it
is calculated. P4 and P5 then complete their computations and
send the results for rows 8 and 9 to P3. For good efficiency,
there should be sufficiently many entries in the region to justify
the communication and other overhead.
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Fig. 4. Sparse matrix example 3.

These three strategies — sending data earlier to achieve
greater overlap, identifying independent rows, and parallel
processing of dense offdiagonal regions — are the bases for
our algorithm.

III. PARALLEL TRIANGULAR SOLUTION ALGORITHM

We now describe our sparse triangular solution algorithm
in greater detail. Algorithm 1 gives a high-level view of
our method. We assume that the basic units of parallelism
are blocks of columns, which are distributed in round-robin
fashion among processors for better load balance. We also
assume that each block is stored in a format that allows easy
access to the rows, such as compressed sparse row format.
The rows of each diagonal block are first reordered for better
parallelism by identifying independent rows, as described in
Algorithm 2. Next, the nonzeros below the diagonal block
are inspected for various structural properties. If there are
“many” nonzeros below the diagonal, they are packed into
new blocks and sent to other processors. Here, “many” means

that the communication and other overheads are justified by
the computation in the block, and this presents a parameter
to tune. In our implementation, if the nonzeros are more than
some constant (20 seems to work well) times the size of the
solution subvector, we send the block to another processor.
After this precomputation is done, we can start solving the
system (described in Algorithm 4), possibly multiple times,
as may be needed.

Algorithm: ParallelSolve
// Matrix columns distributed to

processors round-robin in blocks
Input: Row myRows[]
Output: x[], solution of sparse triangular system
// We know which rows depend on other

blocks
reorderDiagonalBlock(myRows)
inspectBelowDiagonalBlock(myRows)
if many nonzeros below diagonal block then

create new blocks and send to other processors
end

while more iterations needed do

triangularSolve(myRows)
end

Algorithm 1: Parallel Solution of Triangular System

Algorithm 2 describes the reordering step, in which indepen-
dent rows are identified so that they can be computed without
any data required from other blocks. Independent row in the
diagonal block means that it has no nonzero to the left of
the block, and it does not depend on any dependent row. For
instance, l66 of Figure 1 is independent because it has no
nonzero to the left. On the other hand, row 5 is dependent;
it has no nonzero to the left of the block, but it depends on
the fourth row through l54. The first loop finds and marks
any dependent rows. The second loop places the independent
rows on a new buffer in backward order. We reverse the
order of independent rows, in the hope of computing the
dependencies of subsequent blocks sooner. This heuristic has
enhanced performance significantly in our test results.

The PlaceRow routine described in Algorithm 3 inspects all
the nonzeros of a given row to make sure that the needed rows

P4 

P5 

Broadcast cost 



Algorithm- high level view 
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Implementation in Charm++ 

¨  Chare array for blocks of columns 
¤ Virtualization 
¤ Built-in round-roubin 
¤ Priority of data messages over compute 

¨  Message aggregation 
¨  Virtualization ratio trade-off 



MPI implementation 

¨  More effort but possible 
¨  Multiple column blocks per processor 

¤ Virtualization illusion 
¤ Mapping 

¨  MPI_Iprobe for priorities 
¨  Give up virtualization 

¤ For easy programming 
¤ Some performance loss 



Evaluation 

¨  Performance highly depends on matrix structure! 
¤ Real application matrices 
¤ Many different ones 
¤ Strong scaling (pretty small matrices!) 

¨  Up to 512 nodes of BG/P 
¤ 1 core per node 
¤ Simple sequential kernel 

¨  Comparison with standard packages 
¤ HYPRE, SuperLU_DIST 



Benchmark matrices 

Name Dimension Independent 
rows 

Nonzeros Nondiagonal 
Nonzero 

Domain 

circuit5M dc 3,523,317 674,311 10,631,719 4,110,848 circuit 
simulation 

slu c-big 345,241 345,141 499,807 17,038 optimization 

slu bbmat 38,744 6,735 17,819,183 15,762,657 fluid 
dynamics 

nlpkkt120 3,542,400 1,814,400 50,194,096 46,651,696 optimization 

… 



Matrix structures 

(a) nlpkkt120 (b) Geo 1438 (c) slu c-big

(d) Freescale1 (e) circuit5M

Fig. 5. Nonzero structure of various test matrices

Matrix Freescale1 also has similar parallelism opportunities,
but with a different structure (Figure 5(d)). Matrix circuit5M
(Figure5(e)) shows another structure with good parallelism
despite having relatively few independent rows. The top left
diagonal blocks enable the computation of many offdiagonal
blocks on the left. Those will be processed in parallel and
cause the other diagonals to complete in parallel.

On the other hand, matrix Geo 1438 shows poor scaling
because it has little parallelism available. Most of its nonzeros
are near the diagonal, but the rows are dependent on each other
(Figure 5(b)). Most of the matrices with poor scaling have
similar structure. Creating parallelism by numerical methods
(such as dropping some nonzeros) is the subject of future
study. Note that having the nonzeros near the diagonal does not
necessarily result in limited parallelism. For instance, matrix
slu c-big has similar structure but shows good scaling, since
many of its rows are independent after reordering.

Comparison with HYPRE: Figure 8 compares the perfor-
mance of our method with that of HYPRE, which is a com-
monly used linear algebra package [11]. As shown, our method
can exploit parallelism on many matrices, whereas HYPRE’s
performance is nearly sequential in all cases. The triangular
solution in HYPRE works essentially sequentially among the
processors. Each processor performs its computations and
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Fig. 7. Scaling for complete LU matrices.

sends the results to the next one, so the processors form a
chain. The choice of this method for the package illustrates
the ineffectiveness of previous parallel approaches for this
problem. The performance of HYPRE is worse than sequential
in many cases because of parallel overhead, although there is
some improvement for large numbers of processors, probably



No-fill Incomplete-LU scaling 

TABLE I

BENCHMARK MATRICES

Name Dimension Independent rows Nonzeros In nondiagonal blocks Application domain

circuit5M dc 3,523,317 674,311 10,631,719 4,110,848 circuit simulation

circuit5M 5,558,326 333,841 32,542,244 26,616,437 circuit simulation

dielFilterV2clx 607,232 4,965 12,958,252 7,824,540 electromagnetics

fem hifreq circuit 491,100 8,744 10,365,173 7,321,726 electromagnetics

Freescale1 3,428,755 2,153,121 11,901,587 5,963,982 circuit simulation

FullChip 2,987,012 12,982 14,804,570 8,126,422 circuit simulation

Geo 1438 1,437,960 5,617 32,297,325 17,912,293 structural analysis

Hamrle3 1,447,360 746,720 3,032,733 1,582,170 circuit simulation

kkt power 2,063,494 811,213 8,545,814 5,549,454 optimization

largebasis 440,020 200,010 3,000,060 2,560,040 optimization

nlpkkt120 3,542,400 1,814,400 50,194,096 46,651,696 optimization

StocF-1465 1,465,137 34,822 11,235,263 5,609,744 fluid dynamics

slu bbmat 38,744 6,735 17,819,183 15,762,657 fluid dynamics

slu c-big 345,241 345,141 499,807 17,038 optimization

slu circuit5M dc 3,523,317 3,429,272 8,027,174 332,376 circuit simulation

slu Freescale1 3,428,755 3,329,165 12,624,349 1,079,503 circuit simulation

slu gsm 106857 589,446 312,454 12,107,540 3,654,630 electromagnetics

slu helm2d03 392,257 373,796 648,305 23,380 2D/3D problem

slu hood 220,542 192,353 2,143,007 540,982 structural analysis

slu kkt power 2,063,494 2,043,810 3,298,181 287,311 optimization

slu largebasis 440,020 280,483 5,095,186 1,991,169 optimization

slu nlpkkt80 1,062,400 1,062,400 1,062,400 0 optimization

slu webbase-1M 1,000,005 986,863 3,345,311 512,433 weighted directed graph

sequential by only a small constant (roughly two), which

shows the low overhead of the algorithm in the worst case.

For these matrices and their application domains, new methods

(probably numerical rather than just algorithmic) are needed.
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Scaling for complete LU matrices: Figure 7 shows the

scaling of our method for up to 512 cores of BlueGene/P using

triangular matrices from complete LU factorization. There

are cases with superlinear speedup because of cache effects.

For example, matrix slu nlpkkt80 achieves speedup of 87 on

64 cores. Many matrices scale well up to 32 or 64 cores,

but performance decreases beyond that point. This is mostly

because the matrices are small relative to the number of cores.

For instance, matrix slu c-big has only 500k nonzeros that

occupy only about 5MB of memory in total. However, it

achieves speedup of more than 40 on 64 cores. By reordering,

this matrix is mostly parallel, with few dependencies. Thus,

the parallel overheads are relatively high in this case and

should be alleviated in a production implementations. This

includes better implementation of broadcast and reduction

(synchronization) using the collective network of BlueGene/P,

if synchronization is required for the application (for example,

iterative refinement of the solution with error estimation). If

synchronization is not required (for example, a fixed number

of refinements), much better performance can be obtained with

small changes to the implementation. In addition, communica-

tion latency is critical for solution of sparse triangular systems,

because of structural dependencies and limited computation.

The figure also shows that matrices for complete LU have a

different (better on average) structure for parallelism than no-

fill incomplete LU matrices. For example, slu circuit5M dc

is much more parallel than circuit5M dc. The reason is that

SuperLU reorders the elements and even drops some of

them that have small magnitude for better factorization. This

strategy improves the triangular solution using our method as

well.

Scaling for various matrix structures: Performance and

scaling of our algorithm can vary with matrix structure. Table I

and Figure 5 help in understanding the parallelism available in

various matrices. For example, matrix nlpkkt120 (Figure 5(a))

enjoys the best performance on 512 cores. The reason is that its

upper left portion consists mainly of independent rows. They

begin computing in parallel, then they send their solution val-

ues to the nonzeros on the bottom (which form a slanted line)

to compute in parallel. Those blocks send their values to the

right diagonal blocks to complete the computation. Thus, there

are three stages, and each stage has many parallel portions.

Good 

Moderate 

Poor 



Complete-LU scaling 

(a) nlpkkt120 (b) Geo 1438 (c) slu c-big

(d) Freescale1 (e) circuit5M

Fig. 5. Nonzero structure of various test matrices

Matrix Freescale1 also has similar parallelism opportunities,
but with a different structure (Figure 5(d)). Matrix circuit5M
(Figure5(e)) shows another structure with good parallelism
despite having relatively few independent rows. The top left
diagonal blocks enable the computation of many offdiagonal
blocks on the left. Those will be processed in parallel and
cause the other diagonals to complete in parallel.

On the other hand, matrix Geo 1438 shows poor scaling
because it has little parallelism available. Most of its nonzeros
are near the diagonal, but the rows are dependent on each other
(Figure 5(b)). Most of the matrices with poor scaling have
similar structure. Creating parallelism by numerical methods
(such as dropping some nonzeros) is the subject of future
study. Note that having the nonzeros near the diagonal does not
necessarily result in limited parallelism. For instance, matrix
slu c-big has similar structure but shows good scaling, since
many of its rows are independent after reordering.

Comparison with HYPRE: Figure 8 compares the perfor-
mance of our method with that of HYPRE, which is a com-
monly used linear algebra package [11]. As shown, our method
can exploit parallelism on many matrices, whereas HYPRE’s
performance is nearly sequential in all cases. The triangular
solution in HYPRE works essentially sequentially among the
processors. Each processor performs its computations and
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sends the results to the next one, so the processors form a
chain. The choice of this method for the package illustrates
the ineffectiveness of previous parallel approaches for this
problem. The performance of HYPRE is worse than sequential
in many cases because of parallel overhead, although there is
some improvement for large numbers of processors, probably
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Comparison to HYPRE 
due to cache effects. Overall, our method is a significant
improvement over this existing code and will reduce the
solution time for many problems.
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Comparison with SuperLU DIST: Figure 9 compares the
performance of our triangular solver to the triangular solver
from the SuperLU DIST package [4]. This solver is called
after factorization of the matrix, sometimes several times to
refine the result or for other purposes. As shown, however,
it does not exploit any parallelism in the matrices. In fact, it
is much worse than the serial performance for all cases, even
though the serial performance of this code is notoriously slow.
For example, SuperLU DIST is more than 221 times slower
than serial performance on 64 cores for matrix slu helm2d03,
whereas our solver achieves a speedup of more than 48.
SuperLU DIST uses a simple 2D decomposition approach for
parallelism, which is inefficient. In fact, HYPRE’s sequential
method performs much better. Our method significantly im-
proves triangular solution and refinement after complete LU.
Because refinement will be much faster, less accurate but faster
factorizations may also become possible.
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Analysis performance: Analysis time is an overhead
that must be paid for many approaches to sparse triangular
solution. It is negligible if it is performed only once, followed
by sufficiently many iterations. In our algorithm, analysis is
performed fully in parallel and independently on different
processors. Thus, the analysis also scales with the number
of processors. In addition, analysis reorders only the rows,
based on a simple scan of rows and nonzeros, which is
relatively inexpensive. Figure 10 compares the analysis time
with the solution time for a sample of matrices using various
numbers of processors. As can be seen, the analysis time is
comparable to the solution time, and it is less than that in most
instances. Thus, analysis time is negligible for applications
with multiple solution iterations. Even for applications with
only one solution iteration, our algorithm (with the analysis
time added) performs much better than the packages we
compared with here. In this case, the solution can be thought of
as a constant times slower, with the constant usually less than
two. Thus, analysis time is not a problem for the performance
of our algorithm.
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VI. CONCLUSIONS AND FUTURE WORK

Parallel solution of sparse triangular linear systems is an
important kernel for many numerical methods used in applica-
tions. For example, it is often used repeatedly in precondition-
ers for iterative methods. It is not easy to implement efficiently
in parallel, however, especially on modern distributed-memory
computers, because of its dependencies and small amount of
work per data.

We presented a novel algorithm based on heuristics that
strive to extract all of the parallelism available in the ma-
trix. It uses low-cost analysis and row reordering to pre-
pare for efficient execution. As opposed to previous meth-
ods, our algorithm does not rely on data redistribution and
many global synchronizations, so it is suitable for large-scale
distributed-memory machines. We implemented our algorithm
in CHARM++ and discussed its potential implementation using
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due to cache effects. Overall, our method is a significant
improvement over this existing code and will reduce the
solution time for many problems.
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Comparison with SuperLU DIST: Figure 9 compares the
performance of our triangular solver to the triangular solver
from the SuperLU DIST package [4]. This solver is called
after factorization of the matrix, sometimes several times to
refine the result or for other purposes. As shown, however,
it does not exploit any parallelism in the matrices. In fact, it
is much worse than the serial performance for all cases, even
though the serial performance of this code is notoriously slow.
For example, SuperLU DIST is more than 221 times slower
than serial performance on 64 cores for matrix slu helm2d03,
whereas our solver achieves a speedup of more than 48.
SuperLU DIST uses a simple 2D decomposition approach for
parallelism, which is inefficient. In fact, HYPRE’s sequential
method performs much better. Our method significantly im-
proves triangular solution and refinement after complete LU.
Because refinement will be much faster, less accurate but faster
factorizations may also become possible.
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Analysis performance: Analysis time is an overhead
that must be paid for many approaches to sparse triangular
solution. It is negligible if it is performed only once, followed
by sufficiently many iterations. In our algorithm, analysis is
performed fully in parallel and independently on different
processors. Thus, the analysis also scales with the number
of processors. In addition, analysis reorders only the rows,
based on a simple scan of rows and nonzeros, which is
relatively inexpensive. Figure 10 compares the analysis time
with the solution time for a sample of matrices using various
numbers of processors. As can be seen, the analysis time is
comparable to the solution time, and it is less than that in most
instances. Thus, analysis time is negligible for applications
with multiple solution iterations. Even for applications with
only one solution iteration, our algorithm (with the analysis
time added) performs much better than the packages we
compared with here. In this case, the solution can be thought of
as a constant times slower, with the constant usually less than
two. Thus, analysis time is not a problem for the performance
of our algorithm.
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VI. CONCLUSIONS AND FUTURE WORK

Parallel solution of sparse triangular linear systems is an
important kernel for many numerical methods used in applica-
tions. For example, it is often used repeatedly in precondition-
ers for iterative methods. It is not easy to implement efficiently
in parallel, however, especially on modern distributed-memory
computers, because of its dependencies and small amount of
work per data.

We presented a novel algorithm based on heuristics that
strive to extract all of the parallelism available in the ma-
trix. It uses low-cost analysis and row reordering to pre-
pare for efficient execution. As opposed to previous meth-
ods, our algorithm does not rely on data redistribution and
many global synchronizations, so it is suitable for large-scale
distributed-memory machines. We implemented our algorithm
in CHARM++ and discussed its potential implementation using
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due to cache effects. Overall, our method is a significant
improvement over this existing code and will reduce the
solution time for many problems.
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Comparison with SuperLU DIST: Figure 9 compares the
performance of our triangular solver to the triangular solver
from the SuperLU DIST package [4]. This solver is called
after factorization of the matrix, sometimes several times to
refine the result or for other purposes. As shown, however,
it does not exploit any parallelism in the matrices. In fact, it
is much worse than the serial performance for all cases, even
though the serial performance of this code is notoriously slow.
For example, SuperLU DIST is more than 221 times slower
than serial performance on 64 cores for matrix slu helm2d03,
whereas our solver achieves a speedup of more than 48.
SuperLU DIST uses a simple 2D decomposition approach for
parallelism, which is inefficient. In fact, HYPRE’s sequential
method performs much better. Our method significantly im-
proves triangular solution and refinement after complete LU.
Because refinement will be much faster, less accurate but faster
factorizations may also become possible.
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Analysis performance: Analysis time is an overhead
that must be paid for many approaches to sparse triangular
solution. It is negligible if it is performed only once, followed
by sufficiently many iterations. In our algorithm, analysis is
performed fully in parallel and independently on different
processors. Thus, the analysis also scales with the number
of processors. In addition, analysis reorders only the rows,
based on a simple scan of rows and nonzeros, which is
relatively inexpensive. Figure 10 compares the analysis time
with the solution time for a sample of matrices using various
numbers of processors. As can be seen, the analysis time is
comparable to the solution time, and it is less than that in most
instances. Thus, analysis time is negligible for applications
with multiple solution iterations. Even for applications with
only one solution iteration, our algorithm (with the analysis
time added) performs much better than the packages we
compared with here. In this case, the solution can be thought of
as a constant times slower, with the constant usually less than
two. Thus, analysis time is not a problem for the performance
of our algorithm.
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VI. CONCLUSIONS AND FUTURE WORK

Parallel solution of sparse triangular linear systems is an
important kernel for many numerical methods used in applica-
tions. For example, it is often used repeatedly in precondition-
ers for iterative methods. It is not easy to implement efficiently
in parallel, however, especially on modern distributed-memory
computers, because of its dependencies and small amount of
work per data.

We presented a novel algorithm based on heuristics that
strive to extract all of the parallelism available in the ma-
trix. It uses low-cost analysis and row reordering to pre-
pare for efficient execution. As opposed to previous meth-
ods, our algorithm does not rely on data redistribution and
many global synchronizations, so it is suitable for large-scale
distributed-memory machines. We implemented our algorithm
in CHARM++ and discussed its potential implementation using
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Conclusion 

Ø  Parallel solution of sparse triangular systems 
Ø Needed for many solvers 
Ø Notoriously hard to parallelize! 

Ø  A novel parallel algorithm 
Ø Many heuristics 

Ø Analysis and reordering 

Ø  Implementation in Charm++ 
Ø Useful features such as virtualization 



Future work 

¨  Mapping column blocks to processors 
¤ Better balance 
¤ Less communication latency 

¨  Smart priorities 
¤ Different blocks 
¤ data messages 

¨  Virtualization ratio 
¨  Message aggregation 



Questions? 


