
Temperature Aware Load Balancing
For Parallel Applications

Osman Sarood

Parallel Programming Lab (PPL)

University of Illinois Urbana Champaign

Why Energy?

• Data centers consume 2% of US Energy
Budget in 2006

• Costed $4.1 billion consumed 59 billion KWh
• The 3‐year cost of powering and cooling
servers exceeds the cost of purchasing the
server hardware

• 2.5X system level power efficiency
improvement in last three years (100X needed
for exascale)

2

Presenter
Presentation Notes
Data centers have been reported to have consumed energy equivalent to 2% of the total US energy budget in 2006
Their operation costed 4.1 billion and consumed a total of 59 billion
There have also been estimates to show that the cost of powering the server for only 3 years exceeds the cost of purchasing them
Now, although there has been a 2.5 times improvement in system level energy consumption, it is still far away from the 100 times improvement required for moving to exascale computing

Why Cooling?

• Cooling accounts for 50% of total cost
• Most data centers face HotSpots responsible for
lower temperatures in machine rooms

• Data center managers can save*:
– 4% (7%) for every degree F (C)
– 50% going from 68F(20C)to 80F(26.6C)

• Room temperatures can be increased provided:
– No Hotposts
– Cores temperatures don’t get too high

*according to Mark Monroe of Sun Microsystem
3

Presenter
Presentation Notes
Cooling costs form a major part of the total energy budget for data centers. Infact they account for 50% of the total energy consumed
This high figure can also be attributed to hotspots which force data center operators to decrease the room temperature for the entire room
Studies show that for every 1C increase in room temperature, 7% of total cooling energy can be saved. In fact data centers can save half of the total cooling cost by raising the room temperature from 20C to 26.6C.
Data center operators can increase the room temperatures if they can be confident that there would be no hotspot formation and cpu cores wont reach very high temperatures.

Core Temperatures

• Reducing cooling results for Wave2D:
– Difference of 6C in average temperature

– Difference of 12C in deviation from average
4

Hotspot!

*CRAC stands for Computer
Room Air Conditioning

Presenter
Presentation Notes
To see the behavior of core temperatures, we ran a Charm++ application (Wave2D) on 128 cores and measured the core temperatures.
The figure shows the average core temperature over 10 minutes using different CRAC set points.
We noticed a difference of about 6C due to reduced cooling by moving from 23.3C to 25.6C
The lower two curves in the figure represent the maximum difference of any core from the average. There is a difference of 11C between the max difference after increasing CRAC set point. A difference of 20C from an average of 57C clearly points towards existence of Hotspots

Constraining Core Temperatures using
DVFS

• Periodic check on core
temperatures

• Timing penalty grows
with a decrease in
cooling

• Machine energy
increases as well!

• Not useful due to
tightly coupled nature
of applications

5

Normalization w.r.t all cores
running at maximum frequency
without temperature control

Presenter
Presentation Notes
We tried to constrain core temperatures using Dynamic Voltage and Frequency scaling. It is a technique widely used to change core frequency and voltage in order to save power.
While doing these runs, we periodically measured core temperatures and scaled down cores that crossed a specified maximum threshold
The figure shows the normalized execution times and energy after constraining core temperatures. The numbers are normalized based on the run where all cores are working at maximum frequency without any temperature control.
The results don’t show an encouraging picture, as we end up spending more time and machine power in order to constrain core temperatures.
The main reason behind such high penalties is the tightly coupled nature of applications under consideration.

Temperature Aware Load Balancer

• Specify temperature threshold and sampling
interval

• Runtime system periodically checks core
temperatures

• Scale down/up if temperature exceeds/below
maximum threshold at each decision time

• Transfer tasks from slow cores to faster ones

6

Presenter
Presentation Notes
Our scheme, Temperature aware load balancing, combines DVFS and temperature control in an efficient way to reduce timing penalty and total energy
Each application can define the maximum threshold along with the interval after which it periodically wants to check core tempeartures
At each decision time, the core temperature is compared to the threshold and the frequency is shifted depending on whether core temperature exceeds or falls below the threshold
The frequency scaling for each core results in speed differential with which the cores can complete tasks. We transfer tasks from slow cores to fast cores in order to load balancer the application
We take a refinement based approach instead of re-assigning each task in order to make our load balancer scalable.

Charm++

• Object‐based over‐decomposition
– Helpful for refinement load balancing

• Migrateable objects
– Mandatory for our scheme to work

• Time logging for all objects
– Central to load balancing decisions

7

Presenter
Presentation Notes
Charm++ is a perfect match for our technique.
Its object based over-decomposition coupled with migrateability of objects allows us to trasnfer tasks to load balance the application
Time logging of task, provided by charm++, is also an essential part of our scheme. We use these times to come up with decisions about which tasks to migrate in order to restore load balance.

Experimental Setup

• 128 cores (32 nodes), 10 different frequency
levels (1.2GHz – 2.4GHz)

• Direct power measurement
• Dedicated CRAC
• Power estimation based on

• Applications: Jacobi2D, Mol3D, and Wave2D
– Different power profiles

• Max threshold: 44C

8

Pac = fac *cair *(Thot +Tac)

Presenter
Presentation Notes
To test our scheme, we used a testbed having 40 single socket nodes connected through a 48-port gigabit switch. The power consumption of these machines were measured using Liebert Power unit
All our experiments were done using 128 cores. The machine room had a dedicated CRAC.
We used temperature sensors at the CRAC air inlet and outlet to measure air temperatures for hot air entering and cold air leaving the CRAC.
For all our experiments, we used a max threshold of 44C which got from some preliminary studies

Average Core Temperatures in Check

• Avg. core temperature within 1‐2 C of threshold

• Can handle applications having different
temperature gradients

9

Presenter
Presentation Notes
Here is the result of some experiments where we tried to constrain the core temperatures within the threshold.
As can be seen once the cores reach the threshold we were able to maintain a very tight control over the core temperatures
This was true for all the 3 apps even though they had different temperature gradient to start with

Hotspot Avoidance

Hot Spots Avoided!

• Without our scheme
max. difference:
– Increases over time
– Increases with CRAC set
point

• With our scheme
– Max. temperature
decreases with time

– Insensitive to CRAC set
point

• Our scheme avoids
Hotspots

10

Wave2D on 128 Cores

Presenter
Presentation Notes
In here we show the results to see how well our scheme does in terms of hot spot aviodance.
The graph shows the maximum difference of any core’s temperature from the average.
The red and green curves represent different CRAC set points where we do not use our scheme. As you can see, that w/o our scheme the core temperature on some nodes keep on deviating more and more from the average which gets worse with the passage of time.
The CRAC setpoint also affects the temperature deviations which can be seen by the seperation between the red and green curves. The higher the CRAC setpoint the greater the deviation.
On the other hand, with our scheme we were able to constrain the max temperature deviation to within 4C of the average.
This shows the success of our scheme in avoiding hotspots

Timing Penalty

• Our load balancer performs better

• Decrease in cooling, increases:
– Timing penalty

– Advantage of our scheme 11

Jacobi2D on 128 Core

Presenter
Presentation Notes
Now we compare the timing penalties for both the schemes. The figure shows the normalized execution times for all three applications using different CRAC set points.
Our scheme consistently performs better than the other scheme.
We can that the timing penalty increases with a decrease in cooling but also the advantage of our scheme increases at the same time.

Processor Timelines for Wave2D

No TempLB

Idle Time

12

• Shows processor utilization during execution
time (green and pink correspond to
computations)

• Execution time dependent on slowest core
• One core can cause timing penalty/slowdown

Presenter
Presentation Notes
In order to see the difference in both the schemes, we present the processor timelines for both.
The top part shows the scheme without our load balancing whereas the bottom one uses our load balancing.
The white lines in the yellow rectangle show the idle time cores 4-12 are spending due the first four cores shifting to lower frequency. This results in a big penalty as only 4 cores now dictate the execution time
We can see that our scheme doesn’t suffer from any such problem.
In order to understand it better we enlarged the area in the yellow rectangle and reproduced it. The two shaded portions represent the idle time due to first 4 cores operating at lower frequency.

Minimum Frequency (No TempLB)

• Frequency of slowest core for (CRAC 23.3C)
• Wave2D and Mol3D

– Lower minimum frequencies
– Higher timing penalties

Application Time
Penalty(%)

Wave 38

Mol3D 28

Jacobi2D 23

13

Presenter
Presentation Notes
The figure shows the minimum frequency of any core when we are not using our load balancer.
We can see that Wave2D and Mol3D has much lower minimum frequencies as compared to Jacobi2D. And hence, the face higher timing penalty.

Timing Overhead

• Dependent on:
– How frequently temperatures checked
– How many migrations

• Wave2D has the highest migration percentage
14

Presenter
Presentation Notes
The overhead of our scheme mainly results migrations to do load balance as the frequency scaling and temperature comparison hardly takes any time
The figure here shows the percentage of objects migrated at each decision time. We can see that these numbers are too small to cause any sizeable overhead.
However we can see that wave2D has the highest migrations as it undergoes the most frequency transitions

Timing Penalty and CRAC Set Point

• Slope: timing penalty (secs) per 1C increase in
CRAC set point

• Correlation between Timing penalty and
MFLOP/s

Application MFLOP/s

Wave 292

Mol3D 252

Jacobi2D 240

15

Presenter
Presentation Notes
To see the response of Applications to increasing CRAC set points i.e. decreasing cooling, we plotted the timing penalty against CRAC set point
The slope of these curves represent timing penalty in seconds for every 1C increase in CRAC set point.
Combining these curves with the table from previous slide, we can conclude that the timing penalty depends on the MFLOP/s given by the application. This is why Wave2D ends up the the largest penalty followed by Mol3D and Jacobi2D.

Machine Energy Consumption

• Our scheme consistently saves machine power in
comparison to `w/o TempLB’.

• High idle power coupled with timing penalty
doesn’t allow machine energy savings.

16

Mol3D on 128 Cores

Presenter
Presentation Notes
This figure shows the normalized machine energy consumption for all three applications.
The normalized energy increases in case of the other scheme whereas our scheme keeps it very close to 1.
The high idle power was the cause due to which we couldn’t get any machine energy savings. Still we keep the machine energy to within 4% of the base case.

Cooling Energy Consumption

• Both schemes save energy (TempLDB better)

• Our scheme saves upto 57%

17

Jacobi2D on 128 Cores

Presenter
Presentation Notes

Saving cooling energy was the motive of our research. To gauge cooling energy saved, we normalized the cooling energy for each run according to the base run where all cores were running with max frequency without temperature control
The figure shows the normalized cooling energy for both the schemes. Both the schemes end up saving some cooling energy but these savings are more in case of our temperature aware load balancer
We end up saving as high as 57% of the cooling cost.

Timing Penalty/ Total Energy Savings

• Mol3D and Jacobi2D show good energy
savings

• Wave2D not appropriate for energy savings?

18

Jacobi2D on 128 Cores

Presenter
Presentation Notes
To get the bigger picture, we plotted % savings in total energy savings with percent timing penalties.
This Figure shows the great potential of saving energy in case of Mol3D and Jacobi2D.
However, it seems that Wave2D is not a good candidate for energy savings.

Temperature range instead of
Threshold

• Temperature Range: 44C – 49C

• Scale down if core temperature > upper limit

• Scale up if core temperature < lower limit

CRAC Set
Point

Timing
Penalty:
Range (%)

Timing
Penalty:

Threshold(%)

Power Saving:
Range (%)

Power Saving:
Threshold (%)

23.3 3 15 19 11

25.6 12 22 23 20

19

Presenter
Presentation Notes
It should be mentioned that our constraints for these experiments were too tight. We trying to maintain a very low average temperature.
In order to demonstrate what could be expected from our scheme, we did another experiment with Mol3D where instead of setting a hard threhold, we defined an accpetable temperature range.
The figure shows that we were able to save a lot of energy with very little timing penalties.

Energy Vs Execution Time

• Our scheme brings green line to red line
– Moving left: saving total energy
– Moving down: saving execution time penalty

• Slope: timing penalty (secs) per joule saved in energy

20

Normalization w.r.t all cores
running at maximum frequency
without temperature control

Mol3D on 128 Cores

Presenter
Presentation Notes
To sum everything up we came up with these figures where we plotted the normalized execution time against normalized energy.
The slope of these curves represent the increase in execution time that would result in saving 1 joule of total energy.
We can also see the impact of our scheme on both time and energy. Our load balancer brings the green curve onto the red where a movenment to the left results in energy savings and to right corresponds to execution time savings

Contributions

• Stabilizing core temperatures

• Avoiding Hotspot

• Minimize timing penalty/ slowdown

• Minimize Cooling costs
– Saved 48% cooling moving from 18.9C – 25.6C

21

Questions

22

Machine Energy Consumption

23

Presenter
Presentation Notes
This figure shows the normalized machine energy consumption for all three applications.
The normalized energy increases in case of the other scheme whereas our scheme keeps it very close to 1.
The high idle power was the cause due to which we couldn’t get any machine energy savings. Still we keep the machine energy to within 4% of the base case.

Cooling Energy Savings

24

Timing Penalty/ Total Energy Savings

25

Energy Vs Execution Time

26

Average Frequency

27

• Mol3D’s average frequency
lower than Jacobi even
with less power/CPU
utilization

• High total power for Jacobi
• Greater number of DRAM

accesses
• Overall large memory

footprint
• High MFLOP/s for Mol3D

considering low CPU
utilization
• Data readily available in

L1+L2

Presenter
Presentation Notes
The upper figure shows the average frequency across all 128 cores over ten minutes of execution with CRAC set at 23.3C
Mol3D’s average frequency is lesser than Jacobi2D whereas the CPU utilization and power draw of Jacobi is greater than it
Now the question arises, why are cores getting heated resulting in frequency dropping in case of Mol3D?
This can only happen if the CPU power consumption for Mol3D is greater than Jacobi2D. But there are no counters of meters to perform that measurement
In order to verify our claim, we ran all three applications using the profiling abilities of Perfsuite. The results are tabulated in the lower figure
There are two important things to be noted here. 1. 10 times higher data traffic between L1-L2 cache and 5-6 times lesser DRAM misses for Mol3D as compared to Jacobi2D

Cooling Energy Savings

57 0.83008303 0.92662993 0.9535189 0.9825494 1.08436118 1.10835359

62 0.91371415 0.91630064 1.02676076 0.94843724 0.94017829 0.94566919

66 0.87636352 0.95424306 0.89537819 0.95016447 0.89775714 0.9712767

70 0.84932621 0.90341406 0.75526485 0.87756626 0.87606527 0.88519665

74 0.69208677 0.76990626 0.66527495 0.79335206 0.71963512 0.89981607

Mol3D Jacobi Wave2D
TempLB TempLB TempLBNo TempLB No TempLB No TempLB

28

Timing Penalty

57 TempLDB w/o TempLDB TempLDB w/o TempLDB TempLDB w/o TempLDB

57 1.04 1.11 1.03 1.06 1.11 1.14

62 1.06 1.15 1.04 1.10 1.13 1.18

66 1.08 1.16 1.06 1.14 1.14 1.21

70 1.11 1.20 1.08 1.17 1.17 1.25

74 1.15 1.28 1.13 1.23 1.26 1.38

78 1.22 1.70 1.19 1.80 1.36 1.90

Mol3D Jacobi

Wave2D

29

Timing Penalty

30

31

	Temperature Aware Load Balancing For Parallel Applications
	Why Energy?
	Why Cooling?
	Core Temperatures
	Constraining Core Temperatures using DVFS
	Temperature Aware Load Balancer	
	Charm++
	Experimental Setup
	Average Core Temperatures in Check
	Hotspot Avoidance
	Timing Penalty
	Processor Timelines for Wave2D
	Minimum Frequency (No TempLB)
	Timing Overhead
	Timing Penalty and CRAC Set Point
	Machine Energy Consumption
	Cooling Energy Consumption
	Timing Penalty/ Total Energy Savings
	Temperature range instead of Threshold
	Energy Vs Execution Time
	Contributions
	Questions
	Machine Energy Consumption
	Cooling Energy Savings
	Timing Penalty/ Total Energy Savings
	Energy Vs Execution Time
	Average Frequency
	Cooling Energy Savings
	Timing Penalty
	Timing Penalty
	Slide Number 31

