

Impact of Type Ia Supernova Ejecta on Binary Companions

Charm++ Workshop, April 18, 2011

Speaker: Kuo-Chuan Pan (ASTR)

[Dept. of Astronomy]

Advisor: Prof. Paul Ricker Collaborator: Prof. Ronald Taam (NU)

[Dept. of Computer Science]

Co-Advisor: Prof. Laxmikant Kale. Collaborators: Dr. Gengbin Zheng Mr. Stas Negara Mr. Akhil Langer

What is supernova !?

Nuclear bomb ~ 10^{15} (J) 2011 Japan Earthquake ~ 10^{17} (J) Supernova ~ 10^{44} (J)

Supernova 1994D in galaxy NGC 4526

What is supernova !?

Nuclear bomb ~ 10^{15} (J) 2011 Japan Earthquake ~ 10^{17} (J) Supernova ~ 10^{44} (J)

Tycho's Supernova Remnant (x-ray)

Supernova 1994D in galaxy NGC 4526

Image credit: NASA

http://www-supernova.lbl.gov/public/figures/snvideo.html

http://www-supernova.lbl.gov/public/figures/snvideo.html

Outline

Introduction

- Numerical Methods (FLASH3)
- Scaling and code optimization
- Scientific results

ntroduction

• Supernova (SN):

Core collapse/ "Type II, Type Ib, ...etc." SN (massive star, with H-line)

Thermonuclear disruption of accreting Carbon-Oxygen white dwarfs/ "Type Ia" (without H-line)

• Light curves of Type la SN:

Peak luminosity and decay time scale correlated (standard candle)

All roughly similar, but real variations seen

Introduction

• Light curves of Type la SN:

Peak luminosity and decay time scale correlated (standard candle) All roughly similar, but real variations seen

Why are SNe la important?

- The use of SNe Ia as one of the main ways to determine key cosmological parameters.
- Galaxy evolution depends on the radiative kinetic energy and nucleosynthetic output of SNe Ia.
- Estimating more accurate SN la rates and understanding the physics of SN remnants will help to place meaningful constraints on the theory of binary evolution.

Possible scenarios for SNe la

Possible scenarios for SNe la

• Single-degenerate scenario (Whelan & Iben 1973)

Key Questions

- Can companion's hydrogen be hidden?
- What happens to the companion after the supernova explosion?
- What is the intrinsic variation of Type Ia supernova?
- Can we detect the remnant companion star in the supernova remnant?

- FLASH3 (Fryxell et al. 2000; Dubey et al. 2008)
- Parallelized code based on adaptive mesh refinement (AMR)
- Grid- and particle- based
- Multi- dimensionality and non-Cartesian geometry
- PPM for shock-capturing hydrodynamics (Colella & Woodward 1984)

Web: http://flash.uchicago.edu

- FLASH3 (Fryxell et al. 2000; Dubey et al. 2008)
- Parallelized code based on adaptive mesh

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

$$\frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) + \nabla P = \rho \mathbf{g}$$

$$rac{\partial
ho E}{\partial t} +
abla \cdot \left[\left(
ho E + P
ight) \mathbf{v}
ight] =
ho \mathbf{v} \cdot \mathbf{g} \; ,$$

$$E = \epsilon + \frac{1}{2} |\mathbf{v}|^2$$

n-Cartesian

drodynamics

<u>b.edu</u>

- FLASH3 (Fryxell et al. 2000; Dubey et al. 2008)
- Parallelized code based on adaptive mesh refinement (AMR)
- Grid- and particle- based
- Multi- dimensionality and non-Cartesian geometry
- PPM for shock-capturing hydrodynamics (Colella & Woodward 1984)

Web: http://flash.uchicago.edu

- FLASH3 (Fryxell et al. 2000; Du
- Parallelized code based on ada refinement (AMR)
- Grid- and particle- based
- Multi- dimensionality and nongeometry
- PPM for shock-capturing hydro (Colella & Woodward 1984)

Web: <u>http://flash.uchicago.e</u>

- FLASH3 (Fryxell et al. 2000; Dubey et al. 2008)
- Parallelized code based on adaptive mesh refinement (AMR)
- Grid- and particle- based
- Multi- dimensionality and non-Cartesian geometry
- PPM for shock-capturing hydrodynamics (Colella & Woodward 1984)

Web: http://flash.uchicago.edu

Parallel AMR: PARAMESH4

a block contains 6x4 zones

Parallel AMR: PARAMESH4

a block contains 6x4 zones

Scaling of FLASH

Cost Estimation

Code Optimization

- High performance computing is required in this project.
- We developed an automatic MPI to AMPI program transformation tool using Photran (Negara et al. 2010)
- Working on a AMR framework using Charm++ (Langer et al. 2011, in prep.)

Simulation Results

Hole in the ejecta

21

Pakmor et al. 2008

The opening angle of the cone-like hole is about ~45 degree in Pakmor et al. (2008)

Hole in the ejecta

The opening angle of the cone-like hole is about ~45 degree in Pakmor et al. (2008)

But the reverse shock is unclear in their SPH simulation

Pan et al. (2011) aft: H+He+C density / Central: total density / Right: N density

Left: H+He+C density / Central: total density / Right: Ni density

t ~ 1000 sec

24

Tycho's Supernova Remnant (x-ray)

Ruiz-Lapuente et al. (2004)

Orbital speed (RLOF) MS: 256.7 km/sec RG: 41.7 km/sec He: 522.9 km/sec

Kick velocity (RLOF) MS: 136.7 km/sec RG: ~0 He: 88.4 km/sec

Nickel Contamination

MS: $< 9 \times 10^{-5}$ Solar mass (< 0.09%)

RG: < 3 x 10⁻⁷ Solar mass (<0.06%)

He: < 3 x 10⁻⁴ Solar mass (<0.03%)

Ablated and Stripped Mass

Conclusions

- Investigated the impact of SN la ejecta on a companion star.
- A power-law relation between the unbound mass and initial separation is found
- Kick velocity can also fitted by a power law
- ~10⁻⁴ solar mass nickel contamination which is larger than the solar abundance

- High performance computing is required in this project.
- A tool to automatic MPI to AMPI transformation
- Charm++ AMR framework

Future work

- Combine the radiation process with fluids
- Predict supernova light curves
- Compare with observations
- Improve the performance and load balancing
- Study possible replacement of PARAMESH with Charm++ library

Binary evolution scenario MS+MS AGB+MS COWD+MS Common envelope

COWD+Giant

COWD+MS

Binary evolution scenario MS+MS AGB+MS COWD+MS Common envelope COWD+MS COWD+Giant

Binary evolution scenario MS+MS AGB+MS COWD+MS Common envelope COWD+RG

COMDING COWD+Giant COWD+MS W

The Euler's equation for compressible hydrodynamics

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$
$$\frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) + \nabla P = \rho \mathbf{g}$$

$$\frac{\partial \rho E}{\partial t} + \nabla \cdot \left[(\rho E + P) \mathbf{v} \right] + \nabla P = \rho \mathbf{v} \cdot \mathbf{g}$$

Star Types

Star Types

Delay Time Distribution (DTD)

- The long-delay-time population (3-4 Gyr) Main-Sequence & White Dwarf channel (Hachisu et al. 2008) Red Giant & White Dwarf channel (Hachisu et al. 1999,2008)
- The short-delay-time population (0.1 Gyr) Helium Star & White Dwarf channel (Wang et al. 2009)

