
New developments in the Charm++
load balancing framework

Abhinav Bhatele

Parallel Programming Laboratory
University of Illinois

April 18th, 2011 Charm++ Workshop 2011 © Abhinav Bhatele

Load balancing in Charm++

• Seed load balancing: chares created as the program
execution happens

• Measurement-based load balancing: based on the
principle of persistence

• Centralized load balancing

• Hierarchical load balancing

• Neighborhood load balancing

2

April 18th, 2011 Charm++ Workshop 2011 © Abhinav Bhatele

Seed load balancing

• Useful in the context of state space search problems where
chares are fired during execution

• Involves the movement of object creation messages (seed)

• Entry methods are called only once (no persistence)

• Fully distributed load balancing strategies:

• Random seed assignment: close to optimal but can lead to high
communication

• Work stealing: Good for applications with lots of chares and leads to less
communication

• Neighborhood load balancing: Good for applications with few chares per
processor, more proactive

3

April 18th, 2011 Charm++ Workshop 2011 © Abhinav Bhatele

Recent results

0

7.5

15

22.5

30

512 1024 2048 4096 8192 16384

T
im

e
(s

)

Number of cores

Unbalanced Tree Search speedup using seed load balancing low overhead
(efficiency 88% on 16K cores) on Blue Gene/P (Yanhua Sun, Gengbin Zheng)

4

April 18th, 2011 Charm++ Workshop 2011 © Abhinav Bhatele

Measurement-based load balancing

• Based on the principle of persistence:
“Computational loads and communication patterns
tend to persist over time”

• Various centralized schemes in Charm

• greedy, refinement-based

• communication-aware, topology-aware

• NUMA-aware, power-aware

• library-based: METIS, Scotch

5

April 18th, 2011 Charm++ Workshop 2011 © Abhinav Bhatele

Interface to load balancing data

• Useful for communication-aware strategies

6

April 18th, 2011 Charm++ Workshop 2011 © Abhinav Bhatele

Writing a load balancer

7

void FooLB::work(LDStats *stats) {
 /** ========================== INITIALIZATION ============================= */
 ProcArray *parr = new ProcArray(stats);
 ObjGraph *ogr = new ObjGraph(stats);

 /** ============================= STRATEGY ================================ */

 /// The strategy goes here
 /// The strategy goes here
 /// The strategy goes here
 /// The strategy goes here
 /// The strategy goes here

 /** ============================== CLEANUP ================================ */
 ogr->convertDecisions(stats);
}

April 18th, 2011 Charm++ Workshop 2011 © Abhinav Bhatele

Example strategy

8

 // breadth first traversal
 while(!vertexq.empty()) {
 start = vertexq.front();
 vertexq.pop();

 for(i = 0; i < ogr->vertices[start].sendToList.size(); i++) {
 // look at all neighbors of a node in the queue and map them while
 // inserting them in the queue (so we can look at their neighbors next)
 nbr = ogr->vertices[start].sendToList[i].getNeighborId();
 if(ogr->vertices[nbr].getNewPe() == -1) {
 vertexq.push(nbr);

 if(parr->procs[nextPe].getTotalLoad() + ogr->vertices[nbr].getVertexLoad() >
avgLoad) {
 nextPe++;
 avgLoad += (avgLoad - parr->procs[nextPe].getTotalLoad())/(numPes-nextPe);
 }
 ogr->vertices[nbr].setNewPe(nextPe);
 parr->procs[nextPe].setTotalLoad(parr->procs[nextPe].getTotalLoad() + ogr-
>vertices[nbr].getVertexLoad());
 }
 } // end of for loop
 } // end of while loop

April 18th, 2011 Charm++ Workshop 2011 © Abhinav Bhatele

3D imbalanced stencil

0

75

150

225

300

64 128 256 512

T
im

e
(s

)

Number of cores
GreedyLB
RefineLB
MetisLB
ScotchLB

9

Joint work by Harshitha Menon, Nikhil Jain,
Francois Pellegrini, Sebastien Fourestier

April 18th, 2011 Charm++ Workshop 2011 © Abhinav Bhatele

kNeighbor

1

10

100

1000

64 128 256 512

T
im

e
(m

s)

Number of cores
GreedyLB
RefineLB
MetisLB
ScotchLB

10

Joint work by Harshitha Menon, Nikhil Jain,
Francois Pellegrini, Sebastien Fourestier

April 18th, 2011 Charm++ Workshop 2011 © Abhinav Bhatele

Load balancing in NAMD

11

0

0

0

1024 63488 64512

1023 1024 2047 63488 64511 64512 65535

Token

Object

Load Data

Load Data

Greedy load balancing

Refinement load balancing

Figure 2: Hierarchical token-based load balancing scheme

balancing algorithm is invoked to make global load balancing decisions across the sub-domains. When load

balancing decisions are made, lightweight tokens that carry only the objects’ workload data are created and

sent to the destination group leaders of the sub-domains. The tokens represent the movement of objects

from an overloaded domain to an underloaded domain. When the tokens that represent the incoming objects

arrive at the destination group leader, their load data are integrated into the existing load database on that

processor. After this phase, the load database of all the group leaders at the lower level domains is updated,

reflecting the load balancing decisions made – new load database entries are created for the incoming objects,

and load database entries corresponding to the outgoing objects are removed from the database. This new

database can then be used to make load balancing decisions at that level. At the intermediate levels of the

tree, load balancing decisions are made in the form of which object migrates to which sub-domain. This

process repeats until load balancing reaches the lowest level, where final load balancing decisions are made

on migrating objects and their final destination processors.

At this point, tokens representing a migration of an object may have traveled across several load balancing

domains, therefore its original processor needs to know which final destination processor the token has

traveled to. In order to match original processors with their tokens, a global collective operation is performed

on the tree. By sending tokens instead of actual object data in the intermediate load balancing phases of

the hierarchical tree, this load balancing scheme ensures that objects are only migrated once after all the

final migration decisions are made.

Joint work by Gengbin Zheng, Esteban Meneses, Abhinav Bhatele

April 18th, 2011 Charm++ Workshop 2011 © Abhinav Bhatele

1million atoms on BG/P

12

0

7.5

15

22.5

30

1024 2048 4096 8192

T
im

e
(s

)

Number of cores

Centralized
Hierarchical

0

1.25

2.5

3.75

5

1024 2048 4096 8192

T
im

e
(s

)

Number of cores

Centralized
Hierarchical

April 18th, 2011 Charm++ Workshop 2011 © Abhinav Bhatele

Load balancing in ChaNGa

• Based on
approximating
chares by their
centroid

• Orthogonal
recursive bisection
in three dimensions

0

5

10

15

20

25

30

256 512 1024 2048

T
im

e
(s

)

Number of cores

Without LB
With LB

Dwarf (5 million particles)
running on Blue Gene/P

13

Joint work by Pritish Jetley and other
members of the ChaNGa group

Load Balancing Contest

