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Obligatory Introductory Quote

“He who controls the past,
               controls the future.”

                    George Orwell, 1984
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In Parallel Programming...

“He who controls the past,
               controls the future.”

                    George Orwell, 1984

“He who controls the writes,
               controls performance.”

                    Orion Lawlor, 2011
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Talk Outline
 Existing parallel programming 

models
 Who controls the writes?

 Charm++ and Charm--
 Charm-style GPGPU

 Conclusions
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Existing Model: Superscalar
 Hardware parallelization of a 

sequential programming model

 Fetch future instructions
 Need good branch prediction

 Runtime Dependency Analysis
 Load/store buffer for mem-carried
 Rename away false dependencies
 RAR,  WAR, WAW,  -> RAW <-

 Now “solved”: low future gain
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Spacetime Data Arrows

Read

Write

“time” (program order)

“space”
(memory, node)



  7

Read After Write Dependency

Read

Write

Read

Write

Artificial
Instruction
Boundary
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Read After Read: No Problem!

Read

Write

Read

Write

Artificial
Instruction
Boundary
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Existing Model: Shared Memory
 OpenMP, threads, shmem
 “Just” let different processors 

access each others' memory
 HW: Cache coherence 

• false sharing, cache thrashing
 SW: Synchronization 

• locks, semaphores, fences, ...
 Correctness is a huge issue

 Weird race conditions abound
 New bugs in 10+ year old code
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Gather: Works Fine

Distributed Reads

Centralized Writes
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Scatter: Tough to Synchronize!

Oops!
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Existing Model: Message Passing
 MPI, sockets
 Explicit control of parallel reads 

(send) and writes (recv)
 Far fewer race conditions

 Programmability is an issue
 Raw byte-based interface (C style)
 High per-message cost (alpha)
 Synchronization issues: when does 

MPI_Send block?
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Existing Model: SIMD
 SSE, AVX, and GPU
 Single Instruction, Multiple Data

 Far fewer fetches & decodes
 Far higher arithmetic intensity

 CPU: Programmability N/A
 Assembly language (hello, 1984!)
 mmintrin.h wrappers: _mm_add_ps
 Or pray for automagic compiler!

 GPU: Programmability OK
 Graphics side: GLSL, HLSL, Cg
 GPGPU: CUDA, OpenCL, DX CS
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NVIDIA CUDA
 CPU calls a GPU “kernel” with a 

“block” of threads
• Now fully programmable (throw/catch, 

virtual methods, recursion, etc)

 Read and write memory anywhere
• Zero protection against multithreaded 

race conditions

 Manual control over a small 
__shared__ memory region 

 Only runs on NVIDIA hardware 
(OpenCL is portable... sorta)
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OpenGL: GL Shading Language
 Mostly programmable (loops, etc)
 Can read anywhere in “textures”, only 

write to “framebuffer” (2D/3D arrays)
• Reads go through “texture cache”, so 

performance is good (iff locality)
• Writes are on space-filling curve
• Writes are controlled by the graphics driver
• So cannot have synchronization bugs!

 Rich selection of texture filtering (array 
interpolation) modes
• Includes mipmaps, for multigrid

 GLSL can run OK on every modern GPU
(well, except Intel...)
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GLSL vs CUDA

GLSL
Programs
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GLSL vs CUDA

GLSL
Programs

CUDA Programs

Mipmaps;
texture writes

Arbitrary
writes
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GLSL vs CUDA

GLSL
Programs

CUDA ProgramsCorrect
Programs
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GLSL vs CUDA

GLSL
Programs

CUDA ProgramsCorrect
Programs

High 
Performance

Programs
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GPU/CPU Convergence
 GPU, per socket:

 SIMD: 16-32 way
 SMT: 2-50 way (register limited)
 SMP: 4-36 way

 CPUs will get there, soon!
 SIMD: 8 way AVX (64-way SWAR)
 SMT: 2 way Intel; 4 way IBM
 SMP: 6-8 way/socket already

• Intel has shown 48 way chips

 Biggest difference: CPU has 
branch prediction & superscalar!
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CUDA: Memory Output Bandwidth

NVIDIA GeForce GTX 280, fixed 128 threads per block

Kernel startup latency: 4us

Kernel o
utput b

andwidth: 8
0 GB/s

t = 4000ns / kernel + bytes * 0.0125 ns / byte



Charm++ and “Charm--”



  23

Existing Model: Charm++
 Chares send each other messages
 Runtime system does delivery

 Scheduling!
 Migration with efficient forwarding
 Cheap broadcasts

 Runtime system schedules Chares
 Overlap comm and compute

 Programmability still an issue
 Per-message overhead, even with 

message combining library
 Collect up your messages (SDAG?)
 Cheap SMP reads?  SIMD? GPU?
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Entry
Method

One Charm++ Method Invocation

Receive one message
  (but in what order?)

Send 
messages

Chare Messages

Update
internal
state

Read
internal
state

Between send and 
receive: migration, 
checkpointing, ...
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The Future: SIMD
 AVX, SSE, AltiVec, GPU, etc
 Thought experiment

 Imagine a block of 8 chares living in 
one SIMD register
• Deliver 8 messages at once (!)

 Or imagine 100K chares living in 
GPU RAM

 Locality (mapping) is important!
 Branch divergence penalty
 Struct-of-Arrays member storage

• xxxxxxxx yyyyyyyy zzzzzzzz
• Members of 8 separate chares!
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Vision: Charm-- Stencil
array [2D] stencil {
public:
   float data;
   [entry] void average(
        float nbors[4]=fetchnbors())
   {
      data=0.25*( nbors[0]+
          nbors[1]+            nbors[2]+
                           nbors[3]);
   }
};  
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Vision: Charm-- Explained
array [2D] stencil {
public:
   float data;
   [entry] void average(
        float nbors[4]=fetchnbors())
   {
      data=0.25*( nbors[0]+
          nbors[1]+            nbors[2]+
                           nbors[3]);
   }
};  

Assembled into 
GPU arrays or SSE vectors
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Vision: Charm-- Explained
array [2D] stencil {
public:
   float data;
   [entry] void average(
        float nbors[4]=fetchnbors())
   {
      data=0.25*( nbors[0]+
          nbors[1]+            nbors[2]+
                           nbors[3]);
   }
};  

Broadcast out to
blocks of array elements
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Vision: Charm-- Explained
array [2D] stencil {
public:
   float data;
   [entry] void average(
        float nbors[4]=fetchnbors())
   {
      data=0.25*( nbors[0]+
          nbors[1]+            nbors[2]+
                           nbors[3]);
   }
};  

Hides local synchronized reads,
network, and domain boundaries
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Vision: Charm-- Springs
array [1D] sim_spring {
public:
   float restlength;
   [entry] void netforce(
        sim_vertex ends[2]=fetch_ends())
   {
       vec3 along=ends[1].pos-ends[0].pos;
       float f=-k*(length(along)-restlength);
       vec3 F=f*normalize(along);
       ends[0].netforce+=F;
       ends[1].netforce-=F;
   }
};
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One Charm-- Method Invocation

Fetch together 
multiple messages

Send off network
messages

   Chare
(on GPU)

“Mainchare”
(on CPU)

Update
internal
states

Read
internal
states
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Noncontiguous Communication
Network Data Buffer

GPU Target Buffer

 Run scatter kernel
 Or fold into fetch
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Key Charm-- Design Features
 Multiple chares receive message 

at once
 Runtime block-allocates incoming 

and outgoing message storage
 Critical for SIMD, GPU, SMP

 Receive multiple messages in 
one entry point
 Minimize roundtrip to GPU

 Explicit support for timesteps
 E.g., double-buffer message 

storage



  34

Charm-- Not Shown
 Lots of work in “mainchare”

 Controls decomposition & comms
 Set up “fetch”

 Still lots of network work
 Gather & send off messages
 Distribute incoming messages

 Division of labor?
 Application scientist writes Chare
 Computer scientist writes Mainchare
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Related Work
 Charm++ Accelerator API 

[Wesolowski]
 Pipeline CUDA copy, queue kernels
 Good backend for Charm--

 Intel ArBB: SIMD from kernel
 Based on RapidMind 
 But GPU support?

 My “GPGPU” library
 Based on GLSL



The Future
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The Future: Memory Bandwidth
 Today: 1TF/s, but only 0.1TB/s
 Don't communicate, recompute

 multistep stencil methods
 “fetch” gets even more complex!

 64-bit -> 32-bit -> 16-bit -> 8?
 Spend flops scaling the data
 Split solution + residual storage

• Most flops use fewer bits, in residual
 Fight roundoff with stochastic 

rounding 
• Add noise to improve precision
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Conclusions
 C++ is dead.  Long live C++!
 CPU and GPU on collision course

 SIMD+SMT+SMP+network
 Software is the bottleneck

 Exciting time to build software!
 Charm-- model

 Support ultra-low grainsize chares
• Combine into SIMD blocks at runtime

 Simplify programmer's life
 Add flexibility for runtime system
 BUT must scale to real applications!
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