
 1

Towards a Usable
Programming Model

for GPGPU
Dr. Orion Sky Lawlor
lawlor@alaska.edu
U. Alaska Fairbanks

2011-04-19
http://lawlor.cs.uaf.edu/

8

 2

Obligatory Introductory Quote

“He who controls the past,
 controls the future.”

 George Orwell, 1984

 3

In Parallel Programming...

“He who controls the past,
 controls the future.”

 George Orwell, 1984

“He who controls the writes,
 controls performance.”

 Orion Lawlor, 2011

 4

Talk Outline
 Existing parallel programming

models
 Who controls the writes?

 Charm++ and Charm--
 Charm-style GPGPU

 Conclusions

 5

Existing Model: Superscalar
 Hardware parallelization of a

sequential programming model

 Fetch future instructions
 Need good branch prediction

 Runtime Dependency Analysis
 Load/store buffer for mem-carried
 Rename away false dependencies
 RAR, WAR, WAW, -> RAW <-

 Now “solved”: low future gain

 6

Spacetime Data Arrows

Read

Write

“time” (program order)

“space”
(memory, node)

 7

Read After Write Dependency

Read

Write

Read

Write

Artificial
Instruction
Boundary

 8

Read After Read: No Problem!

Read

Write

Read

Write

Artificial
Instruction
Boundary

 9

Existing Model: Shared Memory
 OpenMP, threads, shmem
 “Just” let different processors

access each others' memory
 HW: Cache coherence

• false sharing, cache thrashing
 SW: Synchronization

• locks, semaphores, fences, ...
 Correctness is a huge issue

 Weird race conditions abound
 New bugs in 10+ year old code

 10

Gather: Works Fine

Distributed Reads

Centralized Writes

 11

Scatter: Tough to Synchronize!

Oops!

 12

Existing Model: Message Passing
 MPI, sockets
 Explicit control of parallel reads

(send) and writes (recv)
 Far fewer race conditions

 Programmability is an issue
 Raw byte-based interface (C style)
 High per-message cost (alpha)
 Synchronization issues: when does

MPI_Send block?

 13

Existing Model: SIMD
 SSE, AVX, and GPU
 Single Instruction, Multiple Data

 Far fewer fetches & decodes
 Far higher arithmetic intensity

 CPU: Programmability N/A
 Assembly language (hello, 1984!)
 mmintrin.h wrappers: _mm_add_ps
 Or pray for automagic compiler!

 GPU: Programmability OK
 Graphics side: GLSL, HLSL, Cg
 GPGPU: CUDA, OpenCL, DX CS

 14

NVIDIA CUDA
 CPU calls a GPU “kernel” with a

“block” of threads
• Now fully programmable (throw/catch,

virtual methods, recursion, etc)

 Read and write memory anywhere
• Zero protection against multithreaded

race conditions

 Manual control over a small
__shared__ memory region

 Only runs on NVIDIA hardware
(OpenCL is portable... sorta)

 15

OpenGL: GL Shading Language
 Mostly programmable (loops, etc)
 Can read anywhere in “textures”, only

write to “framebuffer” (2D/3D arrays)
• Reads go through “texture cache”, so

performance is good (iff locality)
• Writes are on space-filling curve
• Writes are controlled by the graphics driver
• So cannot have synchronization bugs!

 Rich selection of texture filtering (array
interpolation) modes
• Includes mipmaps, for multigrid

 GLSL can run OK on every modern GPU
(well, except Intel...)

 16

GLSL vs CUDA

GLSL
Programs

 17

GLSL vs CUDA

GLSL
Programs

CUDA Programs

Mipmaps;
texture writes

Arbitrary
writes

 18

GLSL vs CUDA

GLSL
Programs

CUDA ProgramsCorrect
Programs

 19

GLSL vs CUDA

GLSL
Programs

CUDA ProgramsCorrect
Programs

High
Performance

Programs

 20

GPU/CPU Convergence
 GPU, per socket:

 SIMD: 16-32 way
 SMT: 2-50 way (register limited)
 SMP: 4-36 way

 CPUs will get there, soon!
 SIMD: 8 way AVX (64-way SWAR)
 SMT: 2 way Intel; 4 way IBM
 SMP: 6-8 way/socket already

• Intel has shown 48 way chips

 Biggest difference: CPU has
branch prediction & superscalar!

 21

CUDA: Memory Output Bandwidth

NVIDIA GeForce GTX 280, fixed 128 threads per block

Kernel startup latency: 4us

Kernel o
utput b

andwidth: 8
0 GB/s

t = 4000ns / kernel + bytes * 0.0125 ns / byte

Charm++ and “Charm--”

 23

Existing Model: Charm++
 Chares send each other messages
 Runtime system does delivery

 Scheduling!
 Migration with efficient forwarding
 Cheap broadcasts

 Runtime system schedules Chares
 Overlap comm and compute

 Programmability still an issue
 Per-message overhead, even with

message combining library
 Collect up your messages (SDAG?)
 Cheap SMP reads? SIMD? GPU?

 24

Entry
Method

One Charm++ Method Invocation

Receive one message
 (but in what order?)

Send
messages

Chare Messages

Update
internal
state

Read
internal
state

Between send and
receive: migration,
checkpointing, ...

 25

The Future: SIMD
 AVX, SSE, AltiVec, GPU, etc
 Thought experiment

 Imagine a block of 8 chares living in
one SIMD register
• Deliver 8 messages at once (!)

 Or imagine 100K chares living in
GPU RAM

 Locality (mapping) is important!
 Branch divergence penalty
 Struct-of-Arrays member storage

• xxxxxxxx yyyyyyyy zzzzzzzz
• Members of 8 separate chares!

 26

Vision: Charm-- Stencil
array [2D] stencil {
public:
 float data;
 [entry] void average(
 float nbors[4]=fetchnbors())
 {
 data=0.25*(nbors[0]+
 nbors[1]+ nbors[2]+
 nbors[3]);
 }
};

 27

Vision: Charm-- Explained
array [2D] stencil {
public:
 float data;
 [entry] void average(
 float nbors[4]=fetchnbors())
 {
 data=0.25*(nbors[0]+
 nbors[1]+ nbors[2]+
 nbors[3]);
 }
};

Assembled into
GPU arrays or SSE vectors

 28

Vision: Charm-- Explained
array [2D] stencil {
public:
 float data;
 [entry] void average(
 float nbors[4]=fetchnbors())
 {
 data=0.25*(nbors[0]+
 nbors[1]+ nbors[2]+
 nbors[3]);
 }
};

Broadcast out to
blocks of array elements

 29

Vision: Charm-- Explained
array [2D] stencil {
public:
 float data;
 [entry] void average(
 float nbors[4]=fetchnbors())
 {
 data=0.25*(nbors[0]+
 nbors[1]+ nbors[2]+
 nbors[3]);
 }
};

Hides local synchronized reads,
network, and domain boundaries

 30

Vision: Charm-- Springs
array [1D] sim_spring {
public:
 float restlength;
 [entry] void netforce(
 sim_vertex ends[2]=fetch_ends())
 {
 vec3 along=ends[1].pos-ends[0].pos;
 float f=-k*(length(along)-restlength);
 vec3 F=f*normalize(along);
 ends[0].netforce+=F;
 ends[1].netforce-=F;
 }
};

 31

One Charm-- Method Invocation

Fetch together
multiple messages

Send off network
messages

 Chare
(on GPU)

“Mainchare”
(on CPU)

Update
internal
states

Read
internal
states

 32

Noncontiguous Communication
Network Data Buffer

GPU Target Buffer

 Run scatter kernel
 Or fold into fetch

 33

Key Charm-- Design Features
 Multiple chares receive message

at once
 Runtime block-allocates incoming

and outgoing message storage
 Critical for SIMD, GPU, SMP

 Receive multiple messages in
one entry point
 Minimize roundtrip to GPU

 Explicit support for timesteps
 E.g., double-buffer message

storage

 34

Charm-- Not Shown
 Lots of work in “mainchare”

 Controls decomposition & comms
 Set up “fetch”

 Still lots of network work
 Gather & send off messages
 Distribute incoming messages

 Division of labor?
 Application scientist writes Chare
 Computer scientist writes Mainchare

 35

Related Work
 Charm++ Accelerator API

[Wesolowski]
 Pipeline CUDA copy, queue kernels
 Good backend for Charm--

 Intel ArBB: SIMD from kernel
 Based on RapidMind
 But GPU support?

 My “GPGPU” library
 Based on GLSL

The Future

 37

The Future: Memory Bandwidth
 Today: 1TF/s, but only 0.1TB/s
 Don't communicate, recompute

 multistep stencil methods
 “fetch” gets even more complex!

 64-bit -> 32-bit -> 16-bit -> 8?
 Spend flops scaling the data
 Split solution + residual storage

• Most flops use fewer bits, in residual
 Fight roundoff with stochastic

rounding
• Add noise to improve precision

 38

Conclusions
 C++ is dead. Long live C++!
 CPU and GPU on collision course

 SIMD+SMT+SMP+network
 Software is the bottleneck

 Exciting time to build software!
 Charm-- model

 Support ultra-low grainsize chares
• Combine into SIMD blocks at runtime

 Simplify programmer's life
 Add flexibility for runtime system
 BUT must scale to real applications!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

