
 1

Towards a Usable
Programming Model

for GPGPU
Dr. Orion Sky Lawlor
lawlor@alaska.edu
U. Alaska Fairbanks

2011-04-19
http://lawlor.cs.uaf.edu/

8

 2

Obligatory Introductory Quote

“He who controls the past,
 controls the future.”

 George Orwell, 1984

 3

In Parallel Programming...

“He who controls the past,
 controls the future.”

 George Orwell, 1984

“He who controls the writes,
 controls performance.”

 Orion Lawlor, 2011

 4

Talk Outline
 Existing parallel programming

models
 Who controls the writes?

 Charm++ and Charm--
 Charm-style GPGPU

 Conclusions

 5

Existing Model: Superscalar
 Hardware parallelization of a

sequential programming model

 Fetch future instructions
 Need good branch prediction

 Runtime Dependency Analysis
 Load/store buffer for mem-carried
 Rename away false dependencies
 RAR, WAR, WAW, -> RAW <-

 Now “solved”: low future gain

 6

Spacetime Data Arrows

Read

Write

“time” (program order)

“space”
(memory, node)

 7

Read After Write Dependency

Read

Write

Read

Write

Artificial
Instruction
Boundary

 8

Read After Read: No Problem!

Read

Write

Read

Write

Artificial
Instruction
Boundary

 9

Existing Model: Shared Memory
 OpenMP, threads, shmem
 “Just” let different processors

access each others' memory
 HW: Cache coherence

• false sharing, cache thrashing
 SW: Synchronization

• locks, semaphores, fences, ...
 Correctness is a huge issue

 Weird race conditions abound
 New bugs in 10+ year old code

 10

Gather: Works Fine

Distributed Reads

Centralized Writes

 11

Scatter: Tough to Synchronize!

Oops!

 12

Existing Model: Message Passing
 MPI, sockets
 Explicit control of parallel reads

(send) and writes (recv)
 Far fewer race conditions

 Programmability is an issue
 Raw byte-based interface (C style)
 High per-message cost (alpha)
 Synchronization issues: when does

MPI_Send block?

 13

Existing Model: SIMD
 SSE, AVX, and GPU
 Single Instruction, Multiple Data

 Far fewer fetches & decodes
 Far higher arithmetic intensity

 CPU: Programmability N/A
 Assembly language (hello, 1984!)
 mmintrin.h wrappers: _mm_add_ps
 Or pray for automagic compiler!

 GPU: Programmability OK
 Graphics side: GLSL, HLSL, Cg
 GPGPU: CUDA, OpenCL, DX CS

 14

NVIDIA CUDA
 CPU calls a GPU “kernel” with a

“block” of threads
• Now fully programmable (throw/catch,

virtual methods, recursion, etc)

 Read and write memory anywhere
• Zero protection against multithreaded

race conditions

 Manual control over a small
__shared__ memory region

 Only runs on NVIDIA hardware
(OpenCL is portable... sorta)

 15

OpenGL: GL Shading Language
 Mostly programmable (loops, etc)
 Can read anywhere in “textures”, only

write to “framebuffer” (2D/3D arrays)
• Reads go through “texture cache”, so

performance is good (iff locality)
• Writes are on space-filling curve
• Writes are controlled by the graphics driver
• So cannot have synchronization bugs!

 Rich selection of texture filtering (array
interpolation) modes
• Includes mipmaps, for multigrid

 GLSL can run OK on every modern GPU
(well, except Intel...)

 16

GLSL vs CUDA

GLSL
Programs

 17

GLSL vs CUDA

GLSL
Programs

CUDA Programs

Mipmaps;
texture writes

Arbitrary
writes

 18

GLSL vs CUDA

GLSL
Programs

CUDA ProgramsCorrect
Programs

 19

GLSL vs CUDA

GLSL
Programs

CUDA ProgramsCorrect
Programs

High
Performance

Programs

 20

GPU/CPU Convergence
 GPU, per socket:

 SIMD: 16-32 way
 SMT: 2-50 way (register limited)
 SMP: 4-36 way

 CPUs will get there, soon!
 SIMD: 8 way AVX (64-way SWAR)
 SMT: 2 way Intel; 4 way IBM
 SMP: 6-8 way/socket already

• Intel has shown 48 way chips

 Biggest difference: CPU has
branch prediction & superscalar!

 21

CUDA: Memory Output Bandwidth

NVIDIA GeForce GTX 280, fixed 128 threads per block

Kernel startup latency: 4us

Kernel o
utput b

andwidth: 8
0 GB/s

t = 4000ns / kernel + bytes * 0.0125 ns / byte

Charm++ and “Charm--”

 23

Existing Model: Charm++
 Chares send each other messages
 Runtime system does delivery

 Scheduling!
 Migration with efficient forwarding
 Cheap broadcasts

 Runtime system schedules Chares
 Overlap comm and compute

 Programmability still an issue
 Per-message overhead, even with

message combining library
 Collect up your messages (SDAG?)
 Cheap SMP reads? SIMD? GPU?

 24

Entry
Method

One Charm++ Method Invocation

Receive one message
 (but in what order?)

Send
messages

Chare Messages

Update
internal
state

Read
internal
state

Between send and
receive: migration,
checkpointing, ...

 25

The Future: SIMD
 AVX, SSE, AltiVec, GPU, etc
 Thought experiment

 Imagine a block of 8 chares living in
one SIMD register
• Deliver 8 messages at once (!)

 Or imagine 100K chares living in
GPU RAM

 Locality (mapping) is important!
 Branch divergence penalty
 Struct-of-Arrays member storage

• xxxxxxxx yyyyyyyy zzzzzzzz
• Members of 8 separate chares!

 26

Vision: Charm-- Stencil
array [2D] stencil {
public:
 float data;
 [entry] void average(
 float nbors[4]=fetchnbors())
 {
 data=0.25*(nbors[0]+
 nbors[1]+ nbors[2]+
 nbors[3]);
 }
};

 27

Vision: Charm-- Explained
array [2D] stencil {
public:
 float data;
 [entry] void average(
 float nbors[4]=fetchnbors())
 {
 data=0.25*(nbors[0]+
 nbors[1]+ nbors[2]+
 nbors[3]);
 }
};

Assembled into
GPU arrays or SSE vectors

 28

Vision: Charm-- Explained
array [2D] stencil {
public:
 float data;
 [entry] void average(
 float nbors[4]=fetchnbors())
 {
 data=0.25*(nbors[0]+
 nbors[1]+ nbors[2]+
 nbors[3]);
 }
};

Broadcast out to
blocks of array elements

 29

Vision: Charm-- Explained
array [2D] stencil {
public:
 float data;
 [entry] void average(
 float nbors[4]=fetchnbors())
 {
 data=0.25*(nbors[0]+
 nbors[1]+ nbors[2]+
 nbors[3]);
 }
};

Hides local synchronized reads,
network, and domain boundaries

 30

Vision: Charm-- Springs
array [1D] sim_spring {
public:
 float restlength;
 [entry] void netforce(
 sim_vertex ends[2]=fetch_ends())
 {
 vec3 along=ends[1].pos-ends[0].pos;
 float f=-k*(length(along)-restlength);
 vec3 F=f*normalize(along);
 ends[0].netforce+=F;
 ends[1].netforce-=F;
 }
};

 31

One Charm-- Method Invocation

Fetch together
multiple messages

Send off network
messages

 Chare
(on GPU)

“Mainchare”
(on CPU)

Update
internal
states

Read
internal
states

 32

Noncontiguous Communication
Network Data Buffer

GPU Target Buffer

 Run scatter kernel
 Or fold into fetch

 33

Key Charm-- Design Features
 Multiple chares receive message

at once
 Runtime block-allocates incoming

and outgoing message storage
 Critical for SIMD, GPU, SMP

 Receive multiple messages in
one entry point
 Minimize roundtrip to GPU

 Explicit support for timesteps
 E.g., double-buffer message

storage

 34

Charm-- Not Shown
 Lots of work in “mainchare”

 Controls decomposition & comms
 Set up “fetch”

 Still lots of network work
 Gather & send off messages
 Distribute incoming messages

 Division of labor?
 Application scientist writes Chare
 Computer scientist writes Mainchare

 35

Related Work
 Charm++ Accelerator API

[Wesolowski]
 Pipeline CUDA copy, queue kernels
 Good backend for Charm--

 Intel ArBB: SIMD from kernel
 Based on RapidMind
 But GPU support?

 My “GPGPU” library
 Based on GLSL

The Future

 37

The Future: Memory Bandwidth
 Today: 1TF/s, but only 0.1TB/s
 Don't communicate, recompute

 multistep stencil methods
 “fetch” gets even more complex!

 64-bit -> 32-bit -> 16-bit -> 8?
 Spend flops scaling the data
 Split solution + residual storage

• Most flops use fewer bits, in residual
 Fight roundoff with stochastic

rounding
• Add noise to improve precision

 38

Conclusions
 C++ is dead. Long live C++!
 CPU and GPU on collision course

 SIMD+SMT+SMP+network
 Software is the bottleneck

 Exciting time to build software!
 Charm-- model

 Support ultra-low grainsize chares
• Combine into SIMD blocks at runtime

 Simplify programmer's life
 Add flexibility for runtime system
 BUT must scale to real applications!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

