

Architecture-Aware Algorithms and Software for Peta and Exascale Computing

Jack Dongarra

University of Tennessee Oak Ridge National Laboratory University of Manchester

H. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powerful Computers in the World
- Yardstick: Rmax from LINPACK MPP

Ax=b, dense problem

- Updated twice a year SC'xy in the States in November Meeting in Germany in June
- All data available from www.top500.org

Performance Development

36rd List: The TOP10

Rank	Site	Computer Country		Cores	Rmax [Pflops]	% of Peak
1	Nat. SuperComputer Center in Tianjin	Tianhe-1A, NUDT Intel + Nvidia GPU + custom	China	186,368	2.57	55
2	DOE / OS Oak Ridge Nat Lab	Jaguar, Cray AMD + custom	USA	224,162	1.76	75
3	Nat. Supercomputer Center in Shenzhen	Nebulea, Dawning Intel + Nvidia GPU + IB	China	120,640	1.27	43
4	GSIC Center, Tokyo Institute of Technology	Tusbame 2.0, HP Intel + Nvidia GPU + IB	Japan	73,278	1.19	52
5	DOE / OS Lawrence Berkeley Nat Lab	Hopper, Cray AMD + custom	USA	153,408	1.054	82
6	Commissariat a l'Energie Atomique (CEA)	Tera-10, Bull Intel + IB	France	138,368	1.050	84
7	DOE / NNSA Los Alamos Nat Lab	Roadrunner, IBM AMD + <mark>Cell GPU</mark> + IB	USA	122,400	1.04	76
8	NSF / NICS U of Tennessee	Kraken, Cray AMD + custom	USA	98,928	.831	81
9	Forschungszentrum Juelich (FZJ)	Jugene, IBM Blue Gene + custom	Germany	294,912	.825	82
10	DOE / NNSA LANL & SNL	Cielo, Cray AMD + custom	USA	107,152	.817	79

36rd List: The TOP10

Rank	Site	Computer	Country	Cores	Rmax [Pflops]	% of Peak	Power [MW]	GFlops/ Watt
1	Nat. SuperComputer Center in Tianjin	Tianhe-1A, NUDT Intel + Nvidia GPU + custom	China	186,368	2.57	55	4.04	636
2	DOE / OS Oak Ridge Nat Lab	Jaguar, Cray AMD + custom	USA	224,162	1.76	75	7.0	251
3	Nat. Supercomputer Center in Shenzhen	Nebulea, Dawning Intel + Nvidia GPU + IB	China	120,640	1.27	43	2.58	493
4	GSIC Center, Tokyo Institute of Technology	Tusbame 2.0, HP Intel + Nvidia GPU + IB	Japan	73,278	1.19	52	1.40	850
5	DOE / OS Lawrence Berkeley Nat Lab	Hopper, Cray AMD + custom	USA	153,408	1.054	82	2.91	362
6	Commissariat a l'Energie Atomique (CEA)	Tera-10, Bull Intel + IB	France	138,368	1.050	84	4.59	229
7	DOE / NNSA Los Alamos Nat Lab	Roadrunner, IBM AMD + <mark>Cell GPU</mark> + IB	USA	122,400	1.04	76	2.35	446
8	NSF / NICS U of Tennessee	Kraken, Cray AMD + custom	USA	98,928	.831	81	3.09	269
9	Forschungszentrum Juelich (FZJ)	Jugene, IBM Blue Gene + custom	Germany	294,912	.825	82	2.26	365
10	DOE / NNSA LANL & SNL	Cielo, Cray AMD + custom	USA	107,152	.817	79	2.95	277

500

Computacenter LTD HP Cluster, Intel + GigE

UK 5,856 .031

53

Absolute Counts US: 274 China: 41 Germany: 26 Japan: 26 France: 26 UK: 25

Performance Development in <u>Top500</u>

Potential System Architecture

Systems	2010
System peak	2 Pflop/s
Power	6 MW
System memory	0.3 PB
Node performance	125 GF
Node memory BW	25 GB/s
Node concurrency	12
Total Node Interconnect BW	3.5 GB/s
System size (nodes)	18,700
Total concurrency	225,000
Storage	15 PB
ΙΟ	0.2 TB
MTTI	days

Potential System Architecture with a cap of \$200M and 20MW

ICLUT

Systems	2010	2018	Difference Today & 2018	
System peak	2 Pflop/s	1 Eflop/s	O(1000)	
Power	6 MW	~20 MW		
System memory	0.3 PB	32 - 64 PB	O(100)	
Node performance	125 GF	1,2 or 15TF	0(10) - 0(100)	
Node memory BW	25 GB/s	2 - 4TB/s	0(100)	
Node concurrency	12	O(1k) or 10k	0(100) - 0(1000)	
Total Node Interconnect BW	3.5 GB/s	200-400GB/s	O(100)	
System size (nodes)	18,700	O(100,000) or O(1M)	0(10) - 0(100)	
Total concurrency	225,000	O(billion)	O(10,000)	
Storage	15 PB	500-1000 PB (>10x system memory is min)	0(10) - 0(100)	
ΙΟ	0.2 TB	60 TB/s (how long to drain the machine)	O(100)	
MTTI	days	O(1 day)	- 0(10)	

Factors that Necessitate Redesign of Our Software

- Steepness of the ascent from terascale to petascale to exascale
- Extreme parallelism and hybrid design
 - Preparing for million/billion way parallelism
- Tightening memory/bandwidth bottleneck
 - Limits on power/clock speed implication on multicore
 - Reducing communication will become much more intense
 - Memory per core changes, byte-to-flop ratio will change
- Necessary Fault Tolerance
 - MTTF will drop
 - Checkpoint/restart has limitations
 - shared responsibility

Average Number of Cores per Supercomputer for Top 20 Systems

Software infrastructure does not exist today

Commodity plus Accelerators

11

We Have Seen This Before

- Floating Point Systems FPS-164/MAX Supercomputer (1976)
- Intel Math Co-processor (1980)
- Weitek Math Co-processor (1981)

1980

AMD

The future is fusion

Future Computer Systems

- Most likely be a hybrid design
 - Think standard multicore chips and accelerator (GPUs)
- Today accelerators are attached
- Next generation more integrated
- Intel's MIC architecture "Knights Ferry" and "Knights Corner" to come.
 - 48 x86 cores
- AMD's Fusion in 2012 2013
 - Multicore with embedded graphics ATI
- Nvidia's Project Denver plans to develop an integrated chip using ARM architecture in 2013.

Major Changes to Software

- Must rethink the design of our software
 - Another disruptive technology
 - Similar to what happened with cluster computing and message passing
 - Rethink and rewrite the applications, algorithms, and software

Exascale algorithms that expose and exploit multiple levels of parallelism

- Synchronization-reducing algorithms
 - Break Fork-Join model
- Communication-reducing algorithms
 - Use methods which have lower bound on communication
- Mixed precision methods
 - 2x speed of ops and 2x speed for data movement
- Reproducibility of results
 - Today we can't guarantee this
- Fault resilient algorithms
 - Implement algorithms that can recover from failures

Parallel Tasks in LU/LL^T/QR

 Break into smaller tasks and remove dependencies

* LU does block pair wise pivoting

PLASMA: Parallel Linear Algebra s/w for Multicore Architectures

POTR

TRSM

SYRK

GEMM

GEMM

POTRF

TRSM

SYRK

POTRE

TRSM

GEMM

SYRK

TRSM

SYRK

Cholesky 4 x 4

TRSM

GEMM

SYRK

Objectives

- High utilization of each core
- Scaling to large number of cores
- Shared or distributed memory

Methodology

- Dynamic DAG scheduling
- Explicit parallelism
- Implicit communication
- Fine granularity / block data layout

Arbitrary DAG with dynamic scheduling

Synchronization Reducing Algorithms

• Regular trace

ICLUT

- Factorization steps pipelined
- Stalling only due to natural load imbalance
- Reduce ideal time
- Dynamic
- Out of order execution
- Fine grain tasks
- Independent block operations

8-socket, 6-core (48 cores total) AMD Istanbul 2.8 GHz

Pipelining: Cholesky Inversion

Pipelined: 18 (3t+6)

Big DAGs: No Global Critical Path

- DAGs get very big, very fast
 - So windows of active tasks are used; this means no global critical path
 - Matrix of NBxNB tiles; NB³ operation
 - NB=100 gives 1 million tasks

Communication Avoiding Algorithms

- Goal: Algorithms that communicate as little as possible
- Jim Demmel and company have been working on algorithms that obtain a provable minimum communication.
- Direct methods (BLAS, LU, QR, SVD, other decompositions)
 - Communication lower bounds for *all* these problems
 - Algorithms that attain them (all dense linear algebra, some sparse)
 - Mostly not in LAPACK or ScaLAPACK (yet)
- Iterative methods Krylov subspace methods for Ax=b, Ax=λx
 - Communication lower bounds, and algorithms that attain them (depending on sparsity structure)
 - Not in any libraries (yet)
- For QR Factorization they can show:

• We have a *m x n* matrix *A* we want to reduce to upper triangular form.

• We have a *m* x *n* matrix *A* we want to reduce to upper triangular form.

• We have a *m* x *n* matrix A we want to reduce to upper triangular form.

 $A = Q_1 Q_2 Q_3 R = QR$

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In *The 3rd Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,* pages 1610–1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In *The 3rd Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,* pages 1610–1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In *The 3rd Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,* pages 1610–1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In *The 3rd Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,* pages 1610–1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In *The 3rd Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,* pages 1610–1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

Communication Reducing QR Factorization

Mixed Precision Methods

- Mixed precision, use the lowest precision required to achieve a given accuracy outcome
 - Improves runtime, reduce power consumption, lower data movement
 - Reformulate to find correction to solution, rather than solution; Δx rather than x.

Idea Goes Something Like This...

- Exploit 32 bit floating point as much as possible.
 - Especially for the bulk of the computation
- Correct or update the solution with selective use of 64 bit floating point to provide a refined results
- Intuitively:
 - Compute a 32 bit result,
 - Calculate a correction to 32 bit result using selected higher precision and,
 - Perform the update of the 32 bit results with the correction using high precision.

Mixed-Precision Iterative Refinement

Iterative refinement for dense systems, Ax = b, can work this way.

L U = lu(A)	O (n ³)
x = L\(U\b)	$O(n^2)$
r = b - Ax	O (<i>n</i> ²)
WHILE r not small enough	
z = L (U r)	O (<i>n</i> ²)
x = x + z	$O(n^1)$
r = b - Ax	O (<i>n</i> ²)
END	

• Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt results when using DP fl pt.

Mixed-Precision Iterative Refinement

Iterative refinement for dense systems, Ax = b, can work this way.

L U = lu(A)	SINGLE	O (n ³)
x = L\(U\b)	SINGLE	O (<i>n</i> ²)
r = b - Ax	DOUBLE	O (<i>n</i> ²)
WHILE r not small enough	ı	
$z = L \setminus (U \setminus r)$	SINGLE	O (<i>n</i> ²)
$\mathbf{x} = \mathbf{x} + \mathbf{z}$	DOUBLE	O (n ¹)
r = b - Ax	DOUBLE	O (<i>n</i> ²)
END		

- Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt results when using DP fl pt.
- It can be shown that using this approach we can compute the solution to 64-bit floating point precision.
 - Requires extra storage, total is 1.5 times normal;
 - O(n³) work is done in lower precision
 - O(n²) work is done in high precision
 - Problems if the matrix is ill-conditioned in sp; O(10⁸)

FERMITesla C2050: 448 CUDA cores @ 1.15GHzSP/DP peak is 1030 / 515 GFlop/s

Matrix size

Gflop/s

Matrix size

Two dual-core 1.8 GHz AMD Opteron processors Theoretical peak: 14.4 Gflops per node DGEMM using 4 threads: 12.94 Gflops PLASMA 2.3.1, GotoBLAS2 Experiments:

> PLASMA LU solver in double precision PLASMA LU solver in mixed precision

N = 8400, using 4 cores	PLASMA DP	PLASMA Mixed
Time to Solution (s)	39.5	22.8
GFLOPS	10.01	17.37
Accuracy $Ax - b \parallel$ $\overline{(\parallel A \parallel \parallel X \parallel + \parallel b \parallel)N\varepsilon}$	2.0E-02	1.3E-01
Iterations		7
System Energy (KJ)	10852.8	6314.8

- For example $\sum x_i$ when done in parallel can't guarantee the order of operations.
- Lack of reproducibility due to floating point nonassociativity and algorithmic adaptivity (including autotuning) in efficient production mode
- Bit-level reproducibility may be unnecessarily expensive most of the time
- Force routine adoption of uncertainty quantification
 - Given the many unresolvable uncertainties in program inputs, bound the error in the outputs in terms of errors in the inputs

A Call to Action: Exascale is a Global Challenge

- Hardware has changed dramatically while software ecosystem has remained stagnant
- Community codes unprepared for sea change in architectures
- No global evaluation of key missing components
- The IESP was Formed in 2008
- Goal to engage international computer science community to address common software challenges for Exascale
- Focus on open source systems software that would enable multiple platforms
- Shared risk and investment
- Leverage international talent base

Improve the world's simulation and modeling capability by improving the coordination and development of the HPC software environment

Workshops:

Build an international plan for coordinating research for the next generation <u>open source software</u> for scientific high-performance computing

Example Organizational Structure: Incubation Period (today):

 IESP provides coordination internationally, while regional groups have well managed R&D plans and milestones

www.exascale.org

- For the last decade or more, the research investment strategy has been overwhelmingly biased in favor of hardware.
- This strategy needs to be rebalanced barriers to progress are increasingly on the software side.
- Moreover, the return on investment is more favorable to software.
 - Hardware has a half-life measured in years, while software has a half-life measured in decades.
- High Performance Ecosystem out of balance
 - Hardware, OS, Compilers, Software, Algorithms, Applications
 - No Moore's Law for software, algorithms and applications

ROADMAP

Published in the January 2011 issue of The International Journal of High **Performance Computing Applications**

Jack Dongarra Pete Beckman Terry Moore Patrick Aerts Giovanni Aloisio Jean-Claude Andre David Barkai Jean-Yves Berthou Taisuke Boku Bertrand Braunschweig Franck Cappello Barbara Chapman Xuebin Chi

48

SPONSORS

Alok Choudhary Sudip Dosanjh Thom Dunning Sandro Fiore Al Geist Bill Groop Robert Harrison Mark Hereld Michael Heroux Adolfy Hoisie Koh Hotta Yutaka Ishikawa Fred Johnson

edf

INVIDIA

Sanjay Kale Richard Kenway David Keyes Bill Kramer Jesus Labarta Alain Lichnewsky Thomas Lippert Bob Lucas Barney Maccabe Satoshi Matsuoka Paul Messina Peter Michielse Bernd Mohr

EPSRC

ANR

FUJITSU

♠

Matthias Mueller Wolfgang Nagel Hiroshi Nakashima Michael E. Papka Dan Reed Mitsuhisa Sato Ed Seidel John Shalf David Skinner Marc Snir Thomas Sterling Rick Stevens Fred Streitz

œ

RINRIA

東京大学

Bob Sugar Shinji Sumimoto William Tang John Taylor Rajeev Thakur Anne Trefethen Mateo Valero Aad van der Steen Jeffrey Vetter Peq Williams Robert Wisniewski Kathy Yelick

