Architectural constraints required to attain I Exaflop/s for scientific applications

Abhinav Bhatele, Pritish Jetley, Hormozd Gahvari, Lukasz Wesolowski, William D. Gropp, Laxmikant V. Kale

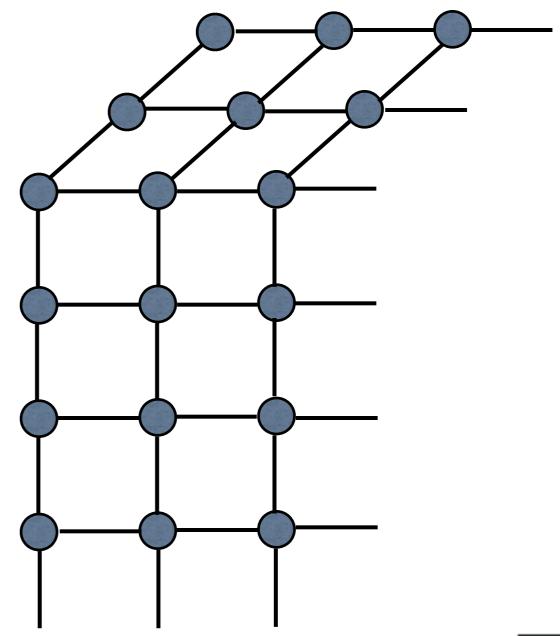
Department of Computer Science University of Illinois

Motivation

- First Teraflop/s computer (ASCI Red, 1997), first
 Petaflop/s computer (RoadRunner, 2008), Exaflop/s
 2018 ?
- Hardware challenges: power/energy, memory, communication
- Software challenges: algorithms and implementations that will scale
- Architectural features to attain I Exaflop/s?

A possible exascale machine

- $2^{20} = 1,048,576$ nodes
- 2¹⁰ cores per node
- 10 Gflop/s cores, time to compute a flop, t_c = 0.1 ns
- 10.74 Exaflop/s peak performance



Modeling methodology

 Estimate the floating point calculations/operations per iteration,

$$T_{comp} = \frac{1}{\eta} \times f(N, P_c) \times n \times t_c$$

Time for communication based on number and size of messages

$$T_{comm} = M \times (t_s + h(N, P_c) \times t_w)$$

• Using total number of floating point operations and time per iteration, $\frac{flops}{T} > 10^{18}$

Applications

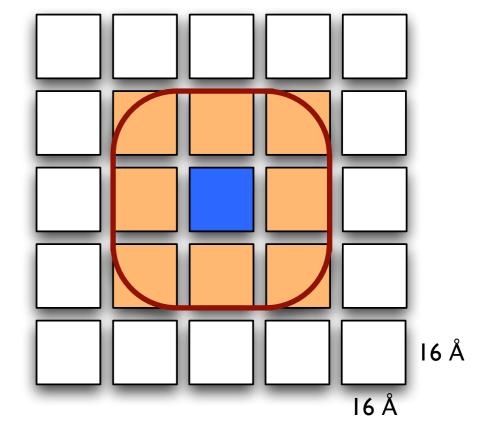
- Molecular Dynamics
 - Short-range forces, spatial decomposition
- Cosmological Simulations
 - Tree algorithms
- Unstructured grid problems
 - Finite element solvers

Molecular Dynamics

Spatial decomposition

```
Algorithm 1 Computation in one time step of MD
```

```
Receive atoms from neighboring processors  \begin{aligned} & \textbf{for} \ i = 1 \ \text{to} \ N_p \ \textbf{do} \\ & \textbf{for} \ j = 1 \ \text{to} \ N_i \ \textbf{do} \\ & \textbf{if} \ \text{atoms are within cutoff radius,} \ r_c \ \textbf{then} \\ & \text{Compute forces on pairs of atoms} \\ & \textbf{end if} \\ & \textbf{end for} \\ & \textbf{Update atom positions and velocities} \end{aligned}
```



Weak scaling of MD

- Size of molecular system = 100 * 2³⁰ = 107 billion atoms
- Number of floating point operations = 33547 * N

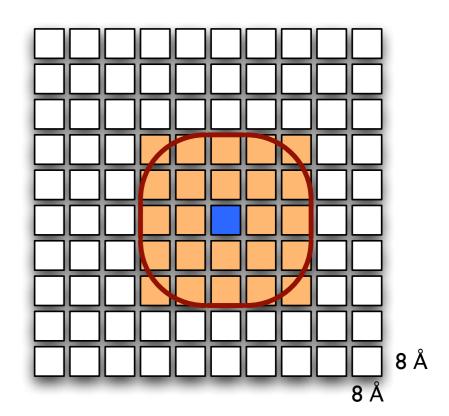
$$\frac{flops}{T} > 10^{18}$$

$$\frac{33547 \times N}{10^{18}} > T$$

• Putting $N = 100 * 2^{30}$,

$$T < 3.6 \times 10^{-3}$$

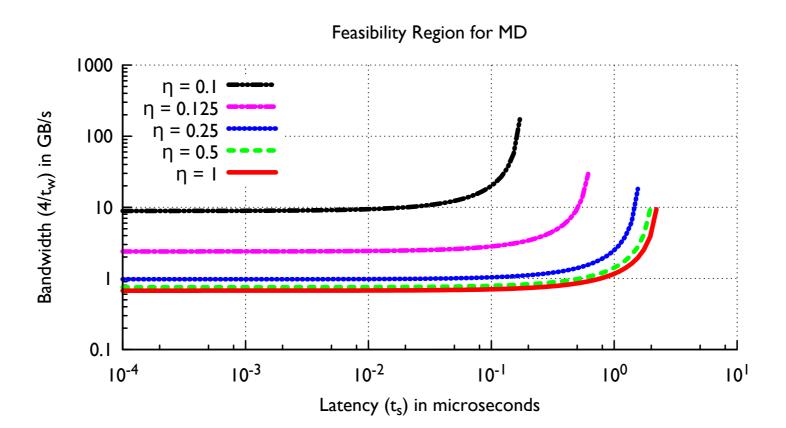
- I00 atoms per cell
- Split the cells in two of the three dimensions
- Each cell communicates with
 5*5*3 = 75 other cells
- For a block of 8*8*16 cells placed on a node only the ones on the boundary communicate inter-node



Inferring network parameters

$$\frac{1}{\eta} \times \frac{N}{P_c} \times 33547 \times t_c + 1376 \times \left(t_s + \frac{N}{P_c} 4t_w\right) < 3.6 \times 10^{-3}$$

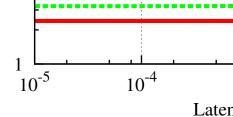
$$t_s + 400t_w < 2.62 \times 10^{-6} - \frac{1}{\eta} \times 2.44 \times 10^{-7}$$



 10^{-3}

0.1

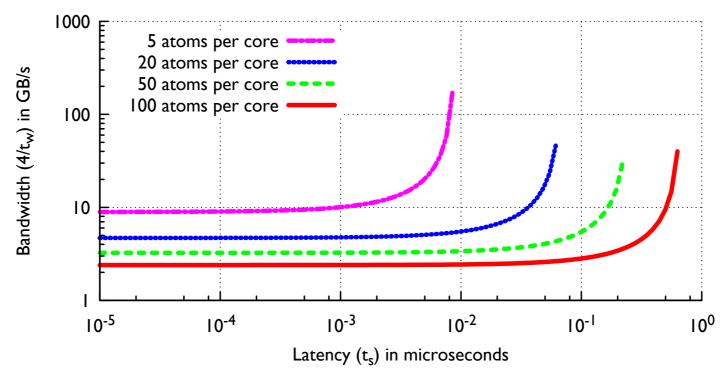
 10^{-4}



Smaller problem sizes

# Atoms	Atoms/core	Time (ms)
107 billion	100	3.602
53.6 billion	50	1.801
21.5 billion	20	0.720
5.4 billion	5	0.180

Feasibility Region for MD



Computational Cosmology

- Several approaches to computing trajectories of bodies under gravitational attraction
 - Direct, all-pairs
 - Tree-based, approximate methods
 - Structured grid/AMR methods
- We consider locality-aware tree codes

Modeling problem size

- What problems will be of interest given an exascalelevel machine
- Extrapolate from current state-of-the-art simulations
- About 2¹³ particles are required per core for good parallel efficiency
- Given O(N log N)/P work per core, about 6350 particles per core are needed at exascale (total 6.8 trillion)

Barnes-Hut computation

- How many flops per iteration are there with 6.8 trillion particles?
- Analyze algorithm:
 - Domain decomposition => distributed spatial tree
 - Every processor core gets a number of leaves
 - For each leaf I, Traverse(I, root)

```
\label{eq:transformed_condition} \begin{split} & \text{Traverse(leaf 1, node n) } \{ \\ & \text{if(IsLeaf(n)) } \{ \\ & \text{LeafForces(l, n);} \\ & \text{else if(Side(n)/|r(n)-r(l)|} < \Theta_t) \\ \{ & \text{CellForces(l, n);} \\ & \text{else } \{ \\ & \text{foreach(node c in Children(n)) } \{ \\ & \text{Traverse(l, c);} \\ \} \\ \} \end{split}
```

```
If d = Depth(n), then Side(n) = c/2^d
```

For $\Theta_t \ge 0.5$, a maximum of E(d) = 33 of 125 neighboring cells expanded at depth d

```
 \begin{split} & \text{Traverse(leaf l, node n) } \{ \\ & \text{if(IsLeaf(n)) } \{ \\ & \text{LeafForces(l, n);} \\ & \text{else if(Side(n)/|r(n)-r(l)|} < \Theta_t) \\ \{ \\ & \text{CellForces(l, n);} \\ & \text{else } \{ \\ & \text{foreach(node c in Children(n)) } \{ \\ & \text{Traverse(l, c);} \\ \} \\ \} \end{aligned}
```


If d = Depth(n), then $Side(n) = c/2^d$

For $\Theta_t \ge 0.5$, a maximum of E(d) = 33 of 125 neighboring cells expanded at depth d

Number of CellForces invocations per leaf:

```
8*E(d)-E(d-1) = 231
```

```
 \begin{split} & \text{Traverse(leaf l, node n) } \{ \\ & \text{if(IsLeaf(n)) } \{ \\ & \text{LeafForces(l, n);} \\ & \text{else if(Side(n)/|r(n)-r(l)|} < \Theta_t) \\ \{ \\ & \text{CellForces(l, n);} \\ & \text{else } \{ \\ & \text{foreach(node c in Children(n)) } \{ \\ & \text{Traverse(l, c);} \\ & \} \\ \} \end{aligned}
```


Number of LeafForces invocations per leaf:

33

If d = Depth(n), then $Side(n) = c/2^d$

For $\Theta_t \ge 0.5$, a maximum of E(d) = 33 of 125 neighboring cells expanded at depth d

Number of CellForces invocations per leaf:

```
8*E(d)-E(d-1) = 231
```

```
\label{eq:traverse} \begin{split} & \text{Traverse(leaf l, node n) } \{ \\ & \text{ if(IsLeaf(n)) } \{ \\ & \text{ LeafForces(l, n);} \\ & \text{ else if(Side(n)/|r(n)-r(l)|} < \Theta_t) \\ \{ \\ & \text{ CellForces(l, n);} \\ & \text{ else } \{ \\ & \text{ foreach(node c in Children(n)) } \{ \\ & \text{ Traverse(l, c);} \\ & \} \\ \} \end{split}
```


Total computation

Number of floating point operations per iteration,

$$312 \times 77 \times N \times \lg \frac{N}{B} + 38 \times 33 \times B \times N$$

To attain a rate of I Exaflop/s,

$$\frac{24024 \times N \lg(N/B) + 1254 \times BN}{T} > 10^{18}$$

• T < 6.52s

 Could obtain communication from number of expansions E(I) for every level I

- Could obtain communication from number of expansions E(I) for every level I
- However, cores on an SMP node can reuse remote data through software caching

- Could obtain communication from number of expansions E(I) for every level I
- However, cores on an SMP node can reuse remote data through software caching
- Communication with remote data caching:
 - Each SMP node holds a cube of space
 - Cores holding particles near surface of cube request remote data - other cores reuse data
 - Find each SMP node's halo of requests at each level of tree

Communication analysis

Leaf level:

$$12n_b^2 + 36n_b + 8$$

I level above leaves:

$$12(n_b/2)^2 + 36(n_b/2) + 8$$

2 levels above leaves:

$$12(n_b/4)^2 + 36(n_b/4) + 8$$

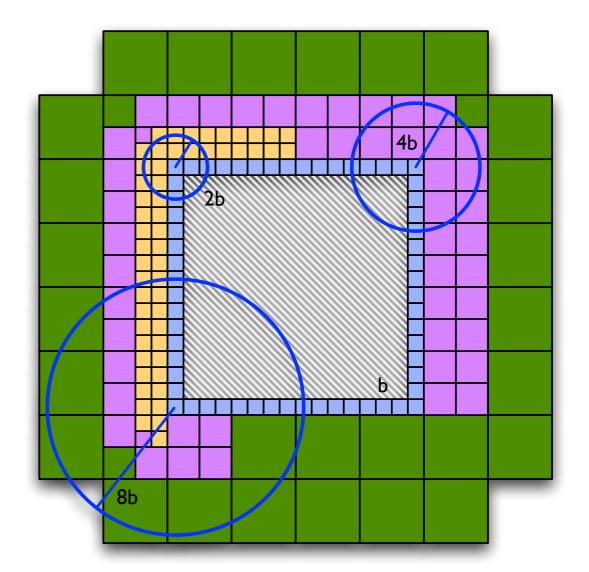
3 levels above leaves:

$$12(n_b/8)^2 + 36(n_b/8) + 8$$

• • •

Total:

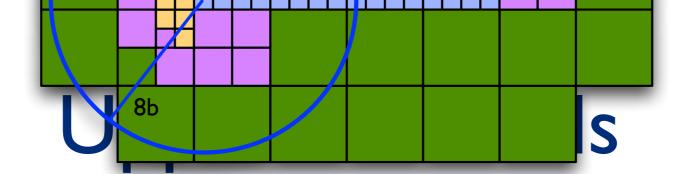
$$C_1^{\text{cell}} = \sum_{i=0}^{\lg n_b} \left(12 \left(\frac{n_b}{2^i} \right)^2 + 36 \left(\frac{n_b}{2^i} \right) + 8 \right)$$
$$= 16n_b^2 + 72n_b + 8\lg n_b - 32 \text{ cells}$$



Upper-level calls

Upper-level calls

• Previous reasoning valid as long as edge length of requested calls $\leq c/(P_n)^{1/3}$



- Previous reasoning valid as long as edge length of requested calls $\leq c/(P_n)^{1/3}$
- Use reasoning similar to calculation of E(I) to get number of larger, upper-level cells requested per SMP node,

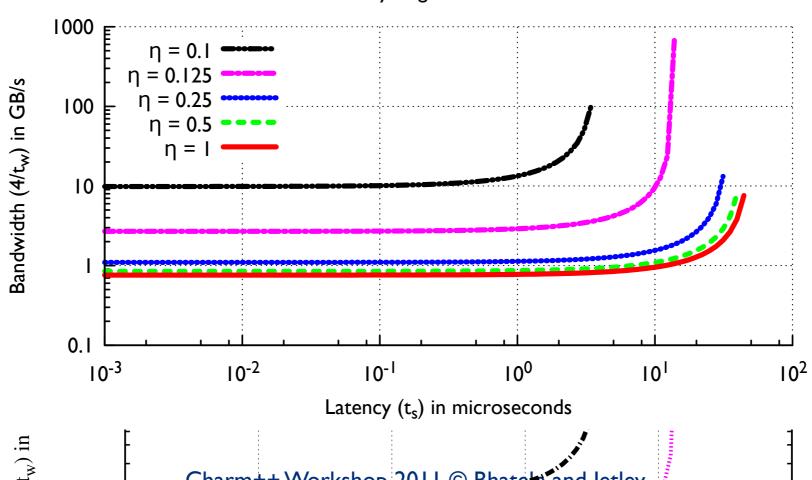
$$C_2^{\text{cell}} = 31 \left(\frac{\lg P_n}{3} - 1 \right) \text{ cells}$$

$$T_{comm} = 15946(t_s + 56t_w) + 93968(t_s + 100t_w)$$

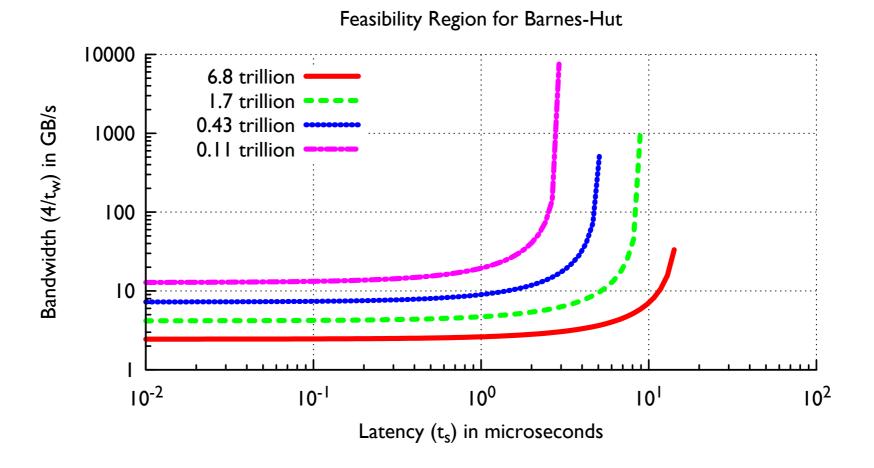
Inferring network parameters

$$\frac{6.52 \times 10^{18}}{P_c} \times \frac{t_c}{\eta} + (1.1 \times 10^5 t_s + 1.03 \times 10^7 t_w) < 6.52$$
$$t_s + 93.62 t_w < 59.2 \left(1 - \frac{0.093}{\eta}\right) \times 10^{-6}$$

Feasibility Region for Barnes-Hut



Smaller problem sizes



Summary

- Modest communication requirements for MD and cosmology at exascale:
 - each communicated value used for large number of flops
- Smaller problem sizes lead to tighter constraints
- Current latency and bandwidth (XT5): ~4 µs, 9.6
 GB/s
- Required: I µs latency and I0 GB/s bandwidth