""TSUBAME2.0, or the long road from tiny clusters to Petascale, and its Possible Contributions to High-**Resolution** Natural Disaster Simulations" Satoshi Matsuoka Global Scientific Information and Computing Center (GSIC) Tokyo Institute of Technology (Tokyo Tech.)

Charm++ Workshop, UIUC, 2010/04/19

"Accelerator"

Special-purpose HW for accelerated computation

- Small production units, special market, expensive
- Lack of software inheritance over HW generations
- Restriction of application area
 - Only accelerates special type/portion of computation
 - Computation that "does not fit" impossible or slow
- Restriction of programming model
 - Specialized programming model, language
 - Restrictions on pointers, recursion, strucures, etc.
 - ► No OS or other system software

GPUs as Modern-Day Vector Engines

NVIDIA Fermi Many Core, Multhreaded, SIMD-Vector, MIMD Parallel Architecture

Copyright (c) 2009 Hiroshige Goto All rights reserved.

(Figure by Kazushige Goto)

NVIDIA Fermi SM "Core"

Fermi Streaming Multiprocessor(SM)

Copyright (c) 2009 Hiroshige Goto All rights reserved.

(Figure by Kazushige Goto)

Parallelism in CUDA GPUs

- <u>SIMD-Vector Parallelism (WARP)</u>
 - 32 (16) way vector parallelism
- <u>SPMD Thread Parallelism</u>
 - Thousands of threads possible
 - Cyclic pipeline, hides memory latency, like vector processor but allows out-of-order execution

• <u>MIMD Parallelism (Kernel)</u>

- Up to #SM (16 in Fermi) Kernels with independent instruction streams
- <u>GPU-CPU Hybrid Parallelism</u>
 - Streaming Data Transfer Enginer via PCI-e
 - Massive Parallelism: GPU, Short Latency: CPU
 - In single chip sharing memory in Denver generation

NukadaFFT 1.0 release !? [SC08,SC09]

NukadaFFT library is a very fast auto-tuning FFT library for CUDA GPUs.

Tuning Parameters:

- (1) Factorization of transform size.
- (2) # of threads launched per SM.

(3) Padding insertion patters for shared memory The library generates many kinds of FFT kernels and selects the fastest one. (exhaustive)

Performance of 1-D FFT. (Double Precision, batch=32,768, GPU=GeForce GTX 480.) For more details, you can see GTC 2010 Research Poster, or catch the author.

You can try online benchmarking as for the size you are interested in.

http://matsu-www.is.titech.ac.jp/~nukada/nufft/

4~5 times more power efficient than CPUs per socket

Compute Intensive or Memory Bound ?

2-dimensional diffusion Equation

Arithmetic INTENSITY: FLOP/Byte

FLOP = number of FP operation for applications Byte = Byte number of memory access for applications

F = Peak Performance of floating point operation B = Peak Memory Bandwidth

GPU vs. CPU Performance

The TSUBAME 1.0 "Supercomputing Grid Cluster" Unified IB network Spring 2006

TSUBAME 1.2 Experimental Evolution (Oct. 2008) The first "Petascale" SC in Japan

680 Unit Tesla Installation... While TSUBAME in Production Service (!)

@Sur

Case for Hybrid Multi/Many-Core Architectures

- Apps scaling governed by two components
 - Weak Scaling part, O(N) concurrency
 - Strong (Finite) Scaling Part, O(K) concurrency
- S: speedup, H: fraction of O(N) execution, h: #weakscale cores, f: #strong scale cores, c: speedup of strong scaling cores over weak scaling cores
- 10PF machine analysis
 - Hybrid (TSUBAME2+): h=500,000, f=10,000, c=4, H=95% => S= 317,460 (Efficiency 63.4%)
 - Homo (BG/Q): h=800,000, f=10,000, c=1, H=95% => S= 161,616 (Efficiency 20.2%)
 - Gap will widen with Exascale, 1-10 billion cores

h

N>>K for

peta-exa

DOE SC Applications Overview (following slides courtesy John Shalf @ LBL NERSC)

NAME	Discipline	Problem/Method	Structure
MADCAP	Cosmology	CMB Analysis	Dense Matrix
FVCAM	Climate Modeling	AGCM	3D Grid
CACTUS	Astrophysics	General Relativity	3D Grid
LBMHD	Plasma Physics	MHD	2D/3D Lattice
GTC	Magnetic Fusion	Vlasov-Poisson	Particle in Cell
PARATEC	Material Science	DFT	Fourier/Grid
SuperLU	Multi-Discipline	LU Factorization	Sparse Matrix
PMEMD	Life Sciences	Molecular Dynamics	Particle

Latency Bound vs. Bandwidth Bound?

- How large does a message have to be in order to saturate a dedicated circuit on the interconnect?
 - $N^{1/2}$ from the early days of vector computing
 - Bandwidth Delay Product in TCP

System	Technology	MPI Latency	Peak Bandwidth	Bandwidth Delay Product
SGI Altix	Numalink-4	1.1us	1.9GB/s	2KB
Cray X1	Cray Custom	7.3us	6.3 <i>G</i> B/s	46KB
NEC ES	NEC Custom	5.6us	1.5GB/s	8.4KB
Myrinet Cluster	Myrinet 2000	5.7us	500MB/s	2.8KB
Cray XD1	RapidArray/IB4x	1.7us	2GB/s	3.4KB

- Bandwidth Bound if msg size > Bandwidth*Delay
- Latency Bound if msg size < Bandwidth*Delay
 - Except if pipelined (unlikely with MPI due to overhead)
- W/HW DMA a few 100ns but not much more

Collective Buffer Sizes are Small(!) - demise of message passing in strong scaling -

Collective Buffer Sizes for All Codes

(Original slide courtesy John Shalf @ LB

Scaling Peta to Exa Design?

- <u>Shorten</u> latency as much as possible
 - Extreme multi-core incl. vectors
 - "Fat" nodes, exploit short-distance interconnection
 - Direct cross-node DMA (e.g., put/get for PGAS)
- *<u>Hide</u>* latency if cannot be shortened
 - Dynamic multithreading (Old: dataflow, New: GPUs)
 - Trade Bandwidth for Latency (so we do need BW...)
 - Departure from simple mesh system scaling
- <u>Change</u> Latency-Starved Algorithms
 - From implicit Methods to direct/hybrid methods
 - Structural locality, extraploation, stochastics (MC)
 - Need good programming model/lang/system for this...

From TSUBAME 1.2 to 2.0: From CPU Centric to GPU Centric Nodes for Scaling High Bandwidth in Network & I/O!!

History of TSUBAME

TSUBAME2.0 Nov. 1, 2011 See Live @ Tokyo Tech Booth #1127

TSUBAME2.0: A GPU-centric Green 2.4 Petaflops Supercomputer

Highlights of TSUBAME 2.0 Design (Oct. 2010) w/NEC-HP

2.4 PF multi-core x86 + Fermi GPGPU

- ▶ 1432 nodes, Intel Westmere/Nehalem EX
- ► 4224 NVIDIA Tesla (Fermi) M2050 GPUs
- >100,000 total CPU and GPU "cores", High Bandwidth
- ▶ 1.9 million "CUDA cores", 32K × 4K = 130 million CUDA threads(!)
- 0.72 Petabyte/s aggregate mem BW,
 - Effective 0.3-0.5 Bytes/Flop, restrained memory capacity (100TB)
- Optical Dual-Rail IB-QDR BW, <u>full bisection BW(Fat Tree</u>)
 - 200Tbits/s, Likely fastest in the world, still scalable
- Flash/node, ~200TB (1PB in future), 660GB/s I/O BW
 - >7 PB IB attached HDDs, 15PB Total HFS incl. LTO tape
- Low power & efficient cooling, comparable to TSUBAME 1.0 (~1MW); PUE = 1.28 (60% better c.f. TSUBAME1)
- Virtualization and Dynamic Provisioning of Windows HPC + Linux job migration etc

TSUBAME2.0 Global Partnership

NEC: Main Contractor, overall system integration, Cloud-SC mgmt. HP: Node R&D, Green; Microsoft: WindowsHPC, Cloud & VM NVIDIA: Fermi GPUs, CUDA; Voltaire: QDR Infiniband Network DDN: Large-Scale Storage; Intel: Westmere & Nehalem-EX CPUs PGI: GPU Vectorizing Compiler

Tokyo Tech. GSIC: Base system design, GPU technologies, Green

TSUBAME 2.0 Performance

Earth Simulator \Rightarrow TSUBAME 4years x 40 Downsizing

TSUBAME2.0 System Overview (2.4 Pflops/15PB)

TSUBAME2.0 Compute Nodes

PCI-e Gen2x16 x2 NVIDIA Tesla S1070 GPU

HP 4 Socket Server CPU: Intel Nehalem-EX 2.0GHz x4 (32cores/node) Memory: 128, 256, 512GB DDR3-1066 SSD: 120GB x4 (480GB/node) 1408nodes:

4224GPUs: 59,136 SIMD Vector Cores, 2175.36TFlops (Double FP)

2816CPUs, 16,896 Scalar Cores: 215.99TFlops

Total: 2391.35TFLOPS

Memory: 80.6TB (CPU) + 12.7TB (GPU)

SSD: 173.9TB

34 nodes: 8.7TFlops

Memory: 6.0TB+GPU

SSD: 16TB+

Total Perf 2.4PFlops Mem: ~100TB SSD: ~200TB

GPU-optimized node in HP Skinless Packaging

Typical Tsubame2 node:

- 2 Intel[®] Xeon[®] Processor X5670 (six-core 2.93Ghz)
- 54 GB or 96 GB memory
- 2 SSDs per node
- Dual Rail IB
- 3 NVIDIA M2050 GPU board
- Nodes go into chassis with shared fans and power
- Chassis mounted into lightweight racks
- Easy assembly
- Lower weight
- Reduced heat retention
- Modular and flexible
- Standard 19" racks

Compute Rack Building Block for Tsubame2

HP Modular Cooling System G2 rack

42U HP Modular Cooling System
G2 rack

- 30 nodes per rack 90 GPUs
- 8 chassis with Advanced Power Management
- 1 HP Network Switch for shared console and admin local area network
- 2 Airflow Dam (Liquid Cooled)
- 4 Voltaire 4036 Leaf Switch
- Power distribution units
- Power per rack approximately 35KW

Green and Reliable SC

- Monitoring Sensors (incl. GPUs)
 - Thermals
 - Power Consumption
 - Utilization
 - HW and SW Health checks

- Advanced Power Management
 - Dynamic Power Capping
 - Power monitoring
 - Node level power off/on
- •Thermal logic technologies
 - Shared power and fans
 - Energy-efficient fans
 - Three-phase load balancing
- •94% Platinum Common Slot Power Supplies

Cooling: Enhanced HP Modular Cooling System G2

HP's water-cooled rack

- Completely closed racks with their own heat exchanger.
- 1.5 x width of normal rack+rear ext.
- Cooling for high density deployments
- **35kW of cooling capacity single rack**
 - Highest Rack Heat Density ever
 - 3000CFM Intake airflow with 7C chiller water
- up to 2000 lbs of IT equipment
- Uniform air flow across the front of the servers
- Automatic door opening mechanism controlling both racks
- Adjustable temperature set point
- Removes 95% to 97% of heat inside racks
- Polycarbonate front door reduces

Pulling It All Together

TSUBAME2.0 Layout (200m2 for main compute nodes)

2.4 Petaflops, 1408 nodes ~50 compute racks + 6 switch racks Two Rooms, Total 160m² 1.4MW (Max, Linpack), 0.48MW (Idle)

ORNL Jaguar and Tsubame 2.0 Similar Peak Performance, 1/4 the Size and Power

TSUBAME 2.0 Full Bisection Fat Tree, Optical, Dual Rail QDR Infiniband

3500 Fiber Cables > 100Km

marine and as it

TSUBAME2.0 Storage

Multi-Petabyte storage consisting of Luster Parallel Filesystem Partition and NFS/CIFS/iSCSI Home Partition + Node SSD Acceleration

TSUBAME2.0 Tape System HFS of over15PB and Scalable

RENKEI-POP Distributed Storage

- Objective: SC Centers-Wide Distributed Storage on SINET National NW
 - RENKEI (MEXT e-Science)Project and R&D and nationwide deployment of RENKEI-PoPs(Point of Presence)
 - ► Data transfer server engine with large capacity and fast I/O
 - "RENKEI-Cloud" on SINET3 with various Grid/Cloud Services including Gfarm distributed filesystem

СРИ	Core i7 975 Extreme (3.33 GHz)
Memory	12GB (DDR3 PC3-10600 , 2GB*6)
NIC	10GbE (without TCP/IP Offload Engine)
System Disk	500GB HDD
SSD RAID	30TB (RAID 5, 2TB HDD x 16)

Tokyo Inst. Tech.	Osaka Univ.	
National Inst. Inform.	KEK	e, mountable from SCs
Nagoya Univ.	Univ. Tsukuba	SINET3, Tsukuba–WAN 10Gbps Network
AIST	Tohoku Univ.	

Cloud Provisioning Supercomputing Nodes

Tsubame 2.0 will have a dynamic provisioning system that works with batch queue systems and cluster management systems to dynamically provision compute resources

- Pool nodes can be dynamically allocated to various supercomputing services
- Linux and Windows batch queue systems coordinate to manage the nodes
- Dynamic increase/decrease of nodes allocated to particular services ※Increse / Decrease of Windows HPC and Linux nodes of different configurations
- Virtual Nodes on VMs on respective OSes can be subject to dynamically allocated and scheduled.

TSUBAME2.0 Software Stack

GPU Enabled OSS and ISV SW: Amber, Gaussian(2011), BLAST, SW,									
Programming Environment GPU)CUDA, OpenCL, MATLab, Mathematica,PGI Fortran, CUDA Fortran,Grid Middleware-NAREGI, Globus, Gfarm2					System Management - User Management - Accounting - Data Backup				
Resource Scheduler PBS professional (w/GPU extensions), Windows HPC Server (Autonomic Operation)									
GPU Libraries CUDA Lib, CULA, NUFFT, (MKL/AKML)	Messa Openi w/GPU	ige Passir MPI,MVAF J Direct	ng PICH2	FileSystem Lustre, GPFS, NFS,CIFS, iSCSI	Power Management) - System Monitoring				
Compiler PGI, Intel, TotalView Debugger (GPU/CPU) Operating Systems/ SUSE Linux Enterprise				/stems/Virtual Machi Enterprise Server, W	ne indows				
HPC Server, KVM									
Driver (Voltaire OFED/InfiniBand, CUDA Driver)									
Server and Storage Platform (HP ProLiant SL390z G7, DL580G7, NVIDIA Tesla M2050/M2070, Voltaire InfiniBand) DDN DFA10000, Oracle SL8500,									

TSUBAME2.0 Estimated Performances

- 1.192 TFlops Linpack [IEEE IPDPS 2010]
 - Top ranks Green 500?
- ~0.5 PF 3D Protein Rigid Docking (Node 3-D FFT) [SC08, SC09]
- 145Tlops ASUCA Weather Forecast
 [SC10 Best Student Paper Finalist]
- Multiscale Simulation of Cardiovascular flows [SC10 Gordon Bell Finalist]
- Various FEM, Genomics, MD/MO (w/IMS), CS-Apps: search, optimization,

EGRE

TSUBAME2.0 World Rankings (Nov. 2010 Announcement Green500!!!)

The Top 500 (Absolute Performance)

#1: ~2.5 PetaFlops: China Defense Univ. Dawning Tianhe 1-A
#2: 1.76 Petaflops: US ORNL Cray XT5 Jaguar
#3: 1.27 PetaFlops: China Shenzen SC Nebulae
#4: 1.19 PetaFlops: Japan Tokyo Tech. HP/NEC TSUBAME2.0
#5: 1.054 PetaFlops: US LLBL Cray XE6 Hopper
#~33 (#2 Japan): 0.191 Petaflops: JAEA Fujitsu

The Green 500 (Performance/Power Efficiency) #1: 1684.20 : US IBM Research BG/Q Prototype (116) #2: 958.35: Japan Tokyo Tech/HP/NEC Tsubame 2.0 (4) #3: 933.06 : US NCSA Hybrid Cluster Prototype (403) #4: 828.67: Japan Riken "K" Supercomputer Prototype (170) #5-7: 773.38: Germany Julich etc.IBM QPACE SFB TR (207-209) (#2+ 1448.03: Japan NAO Grape-DR Prototype) (383) (Added in Dec.)

Top500 BoF Tue 16th 17:30~

Figreen 50C

Green 500 BoF Thu 18th 12:15~

"Little Green 500" collaboration w/Microsoft Achieved 1.037 Gigaflops/W in power efficient experimental config.

This certificate is in recognition of your organization's achievements in reducing the environmental impact of high-performance computing.

GSIC Center, Tokyo Institute of Technology

Is recognized as the

Greenest Production Supercomputer in the World

on the world's Green500 List of computer systems as of

November 2010

Wu-chun Feng, Co-Chair

w. C.

Kirk Cameron, Co-Chair

Petaflops? Gigaflops/W?

x66,000 faster x3 power efficient

Laptop: SONY Vaio type Z (VPCZ1) CPU: Intel Core i7 620M (2.66GHz) MEMORY: DDR3-1066 4GBx2 OS: Microsoft Windows 7 Ultimate 64bit HPL: Intel(R) Optimized LINPACK Benchmark for Windows (10.2.6.015) 256GB HDD

18.1 GigaFlops Linpack369 MegaFlops/W

Supercomputer: TSUBAME 2.0 CPU: 2714 Intel Westmere 2.93 Ghz GPU: 4071 nVidia Fermi M2050 MEMORY: DDR3-1333 80TB + GDDR5 12TB OS: SuSE Linux 11 + Windows HPC Server R2 HPL: Tokyo Tech Heterogeneous HPL 11PB Hierarchical Storage

1.192 PetaFlops Linpack 1043 MegaFlops/W

TSUBAME2.0 (2010) vs. Earth Simulator1 (ES) (2002) vs. Japanese 10PF NexGen "K" @Kobe (2012)

200m2

tGen

10,000m2

The "IDEAL TSUBAME2.0"

- What are architecturally possible without excessive design, power, or SW change
- In the REAL TSUBAME2.0, will have to compromise various parameters for cost and other reasons
- Almost Equal to "High Bandwidth" TSUBAME2/SL390 Config

Comparing the Networks

結合ネットワーク(IN)部

12.8GB/s Link 5us latency Full Crossbar ~8TB/s Bisection BW

Ideal TSUBAME2.0

(4+4)GB/s Link 2us latency Full Bisection Fat Tree ~60TB/s Bisection BW 10PF NLP 5GB/s Link ?us latency 6-D Torus ~30TB/s? Bisection BW

Summary of Comparisons

- (1) ES1 vs. Ideal TSUBAME2.0
 - Similar (Mem BW : Network BW), full bisection NW
 - ► ES1 ∑BW : TSUBAME2 ∑BW = 1 : 6
 - ⇒ BW-bound apps (e.g. CFD) should scale equally on both w.r.t. ∑BW (TSUBAME2.0 6 times faster), Other apps *drastically* faster on TSUBAME2.0
- (2) 10PF NLP vs. Ideal TSUBAME2.0
 - ► Similar Memory Bytes/Flop (0.3~0.5)
 - ▶ NLP x2 superior on Mem BW : Network BW
 - ► TSUBAME2.0 x2 better on Bisection BW?
 - ⇒ Most apps similar efficiency and (strong) scalability NLP ~4 times faster on full machine (weak scaling)

(Faster Than) Real-time Tsunami Simulation

(Prof. Takayuki Aoki, Tokyo Tech.)

ADPC : Asian Disaster Preparedness Center Early Warning System:

Data Based Extrapolation

Shallow-Water Equation

Conservative Form:

Assuming hydrostatic balance in the vertical direction,

8 GPU 400km × 800km (100m mesh)

SCREEN Capture

Tsunami Prediction of Northern Japan Pacific Coast

Bathymetry

□ Grid Size 4096x8192

 Latitude N35° - N42°
 Longitude E140°30' - E144°18'

□ Length 370km x 740km

Multi-node CPU/GPU Comparison *** Strong Scaling *** • Results on TSUBAME1.2

Next Generation Numerical Weather Prediction[SC10]

Collaboration: Japan Meteorological Agency

Meso-scale Atmosphere Model: **Cloud Resolving Non-hydrostatic model** [Shimokawabe et. al. SC10 BSP Finalist]

ex. WRF(Weather Research and Forecast)

Typhoon ~ 1000km

1~ 10km Tornado, Down burst. **Heavy Rain**

TSUBAME 2.0 : 145 Tflops

World Record !!!

WSM5 (WRF Single Moment 5-tracer) Microphysics*

Represents condensation, precipitation and thermodynamic effects of latent heat release

1 % of lines of code, 25 % of elapsed time

 \Rightarrow 20 x boost in microphysics (1.2 - 1.3 x overall improvement)

ASUCA : full GPU Implementation

for 1-D

developed by Japan Meteorological Agency **Block Division** for Advection _{nv}

WRF GPU Computing

WRF (Weather Research and Forecast)

Open Source Community Code (NCAR, NCEP, OU, NOAA/FSL, AFWA)

WSM5 (WRF Single Moment 5-tracer) Microphysics*

Represents condensation, precipitation and thermodynamic effects of latent heat release

1 % of lines of code, 25 % of elapsed time

 \Rightarrow 20 x boost in microphysics (1.2 - 1.3 x overall improvement)

WRF-Chem**

provides the capability to simulate chemistry and aerosols from cloud scales to regional

ASUCA: Next Gen Weather Simulation Code

■ASUCA Production Code

- A next-generation high resolution weather simulation code that is being developed by Japan Meteorological Agency (JMA)
- ASUCA succeeds the JMA-NHM as an operational nonhydrostatic regional model at JMA

Similar Structure as WRF

- ✓ HEVI (Horizontally explicit Vertical implicit) scheme
- ✓ Dynamical Core uses a numerical scheme with 3rd-order accuracy in time and space Flux-form non-hydrostatic compressible equation

Generalized coordinate

Mesoscale Atmosphere Model **ASUCA** Horizontal 5km Resolution (Present)

Mesoscale Atmosphere Model ASUCA x1000 Horizontal 500m Resolution

TSUBAME 2.0 (1 GPU)

TSUBAME 2.0 Performance

Earthquake Simulation

Prof. Taro Okamoto @ Tokyo Inst. Tech.

TSUBAME 1.2 120 GPUs for 1920x3072x1152 2.1 TFlops

Gas-Liquid Two-Phase Flow

Fluid Equations: Dam Breakage

- Navier-Stokes solver: Fractional Step
- Time integration: 3rd TVD Runge-Kutta
- Advection term: 5th WENO
- Diffusion term: 4th FD
- Poisson: AMG-BiCGstab
- Surface tension: CSF model
- Surface capture: CLSVOF(THINC + Level-Set)

Continuum eq.

$$7 \cdot \mathbf{u} = 0$$

-

Momentum eq.

Level-Set advection

VOF continuum eq.

Level-Set re-initialization

$$\nabla \cdot \mathbf{u} = 0$$

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{u} + \frac{1}{\rho} \mathbf{F}$$

$$\frac{\partial \phi}{\partial t} + (\mathbf{u} \cdot \nabla) \phi = 0$$
Staggered variants
$$\frac{\partial \psi}{\partial t} + \nabla \cdot (\mathbf{u}\psi) = 0$$

$$\frac{\partial \phi}{\partial \tau} = sgn(\phi) (1 - |\nabla \phi|)$$

ggered variable position

u: velocity on x-direction v : velocity on y-direction w : velocity on z-direction $p, \phi, \psi \rho$: scalar variables

Pulmonary Airflow Study

Pulmonary Airflow Study

Collaboration with Tohoku University

Copyright © Takayuki Aoki / Global Scientific Information and Computing Center, Tokyo Institute of Technology
MUPHY: Multiphysics simulation of blood flow (Melchionna, Bernaschi et al.)

Combined Lattice-Boltzmann (LB) simulation for plasma and Molecular Dynamics (MD) for Red Blood Cells

Realistic geometry (from CAT scan)

Two-levels of parallelism: CUDA (on GPU) + MPI

1 Billion mesh node for LB component100 Million RBCs

Results on Tsubame2 Supercomputer

Cluster of Nvidia M2050 GPUs connected by QDR Infiniband. Scaling study up to 512 nodes (each node has 3 GPUs). Very fast parallel I/O (read 100 GB in ~10 sec)

1 billion mesh nodes

GPUs	Time (s)	Efficiency
256	0.07616	N.A.
512	0.03852	98.86 %
1,024	0.01995	95.37 %
1,536	0.01343	94.43 %

Lattice Boltzmann Scaling (time per step)

LB kernel:1 GPU ~200 BG/P cores 1536 GPUs equivalent to full BlueGene/P

1 billion mesh nodes + 100 million

RR(
	GPUs	Time (s)	Efficiency
	256	0.44453	N.A.
	512	0.25601	86.82%
	1,024	0.14062	79.03%

Lattice Boltzmann + Cell Dynamics Scaling (time per step)

Time to completion on stationary flow:

New run on FULL TSUBAME2.0 (4000 GPUs) just completed with an improved algorithm, exhbiting petascale performance(!)

Dendrite Solidification

Allen-Cahn Equation based on Phase Field Model

Dendrite Solidification for Pure Metal Now Scales to flop

PageRank Results

(A. Cevahir, A. Nukada, S. Matsuoka)

 Huge data is processed -- bigger data scales better
 A state-of-the-art PageRank method is implemented (based on *Cevahir, Aykanat, Turk, Cambazoglu: IEEE TPDS June 2010*)
 (Problem bandwidth restricted – socket - to - socket comparison)

But it is not just HW Design...SOFTWARE(!)

- The *entire software stack* must preserve bandwidth, hide latency, lower power, heighten reliability for Petascaling
- Example: TSUBAME1.2, Inter-node GPU <>
 GPU achieves only 100-200MB/s in real apps
 - c.f. 1-2GB/s HW dual rail IB capability
 - Overhead due to unpinnable buffer memory?
 - New Mellanox driver will partially resolve this?
 - Still need programming model for GPU ⇔ GPU
- Our SW research as CUDA CoE (and other projects such as Ultra Low Power HPC)

Tokyo Tech GPU Research JST-CREST ULP-HPC

(Ultra Low-Power HPC Project) GPU Power Performance Modeling and Heterogeneous Scheduling

JST CREST ULP-HPC Scheme

Tokyo Tech GPU Research 1. Auto-Tuning GPU Numerical Libraries

"Auto-Tuning" Sparse Iterative Solvers on a Multi-GPU Clusters

(A. Cevahir, A. Nukada, S. Matsuoka)

- ➢ High communication due to irregular sparsity
 - GPU computing is fast, communication bottleneck is more severe
- > We propose techniques to achieve scalable parallelization
 - A new sparse matrix-vector multiplication (MxV) kernel [*ICCS'09*]
 - <u>Auto-selection of optimal running MxV kernel [ISC'10]</u>
 - Minimization of communication between GPUs [ISC'10]
- Two methods: CG and PageRank (on 100CPUs)

High performance Linpack on heterogeneous Supercomputers [IPDPS 08,10]

- Dense linear computation on large heterogeneous systems
 - All types of processors are used for kernel (DGEMM)
 - Even supporting "heterogeneous nodes"
 - Load balancing techniques, tuning for reducing PCIe communication

Mapping between MPI processes and heterogeneous processors

Xeon

lesia

Some cores are dedicated for PCI comm

- >10,000 CPU cores, >600 Teslas, >600 ClearSpeed are cooperatively used
 - 87.01TFlops, 53% efficiency \rightarrow 7 times improvements on Top 500 ranking

	Jun06	Nov06	Jun07	Nov07	Jun08	Nov08	Jun09		
Linpack speed	38.18TF	47.38	48.88	56.43	67.70	77.48	87.01		
Rank	7	9	14	16	24	29	41		
\bigcirc CS x 360 \bigcirc Opteron \bigcirc CS x 648 \bigcirc									

Measuring GPU Power Consumption

• Two power sources

– Via PCI Express: < 75 W</p>

- Direct inputs from PSU: < 240 W</p>
- Uses current clamp sensors around the power inputs

Precise and Accurate Measurement with Current Probes

Attaches current sensors to two power lines in PCIe

Direct power inputs from PSU

Reads currents at 100 us interval

Statistical Modeling of GPU Power Consumption [IEEE HPPAC10]

- Regularized linear regression
 - Finds linear correlation between per-second PMC values and average power of a kernel execution
 - Aggregates 3 kinds of global memory loads/stores
 - gld: gld_32b + gld_64b * 2 + gld_128b * 4
 - Regularization for avoiding overfitting to training data (Ridge Regression [10])

Low Power Scheduling in GPU Clusters [IEEE IPDPS-HPPAC 09]

Objective: Optimize CPU/GPU Heterogeneous

- Optimally schedule mixed sets of jobs
 executable on either CPU or GPU but
 w/different performance & power
- Assume GPU accel. factor (%) known
 30% Improvement Energy-Delay
 Product

TODO: More realistic environment

- Different app. power profile
- PCI bus vs. memory conflict
 - GPU applications slow down by 10 % or more when co-scheduled with memoryintensive CPU app.

Intelligent Task Scheduling for GPU clusters

- considering conflicts on memory bus and PCI-E bus -

4 processes share a node.

T. Hamano, et al. IPSJ SIGHPC-124 (domestic)

Status of each process is one of the following:

(1) Memory access

(2) PCI transfer (assume blocking cuMemcpy)

(3) No memory access

Speed-down ratio of a process = r (percentage of each status) $\times \alpha$ (conflict coefficient)

 $\sum_{s0} \sum_{s1} \sum_{s2} \sum_{s3} \alpha(s0, \{s1, s2, s3\}) r_0(s0) r_1(s1) r_2(s2) r_3(s3)$

We integrated this model into ECT(Earliest Complete Time) scheduling.

Assuming the following information of each job is known

- •Execution time (at stand alone case)
- •Total memory access (from performance counter)
- •Total PCI-E transfer (from CUDA profiler)

Actual execution time is estimated by our model.

Tokyo Tech GPU Research CUDA Center of Excellence GPU Fault Tolerance

NVCR : A Transparent Checkpoint/Restart for CUDA

CUDA Checkpoint using BLCR (Takizawa, 2009)

- Save all data on CUDA resource.
- Destroy all CUDA context.
- BLCR
- Reallocate CUDA resource.
- Restore data.

After reallocation, the address or handle may differ from previous one.

Handles are Opaque pointers : can be virtualized. Addresses must be visible for user application.

Our answer is `REPLAY'.

NVCR records calls of all APIs related to device memory address such as; cuMem*(), cuArray*(), cuModule*().

We added some optimization of reducing the API records. For example, locally resolved alloc-free pairs are removed from the record.

The time for Replaying is quite negligible compared with the main BLCR procedure to write image to HDD.

NVCR supports

- All CUDA 3.0 APIs
- OpenMPI
- Both CUDA runtime and CUDA driver API.

CUDA pinned memory is supported partially ... Full support requires NVIDIA's official support.

MPI CUDA Checkpointing

Hybrid Diskless Checkpoint

- **Problem:** Decrease the ckpt. overhead with erasure codes on large-scale GPU systems.
- Scalable encoding algorithm and efficient group mapping [CCGrid10]
- Fast encoding work on idle resource (CPU/GPU)

Hybrid Diskless Checkpoint

• Less than 3% of ckpt. overhead using idle resources

 We are currently combining this technique with our MPI CUDA Checkpoint.

Software Framework for GPGPU Memory FT [IEEE IPDPS 2010]

- Error detection in CUDA global memory + Checkpoint/Restart
- Works with existing NVIDIA CUDA GPUs

Lightweight Error Detection

- Cross Parity for 128B blocks of data
 - Detects a single-bit error in a 4B word
- Detects a two-bit error in a 128B block
- No on-the-fly correction → Rollback upon error

Exploit the latency hiding capability of GPUs for data correctness

Tokyo Tech GPU Research JST-ANR GPU Higher-Level Programming Model

Physis: A Domain Specific Framework for Large-Scale GPU Clusters

- Portable programming environment for stencil computing on structured grids
 - Implicitly parallel
 - Distributed shared memory
- Provides concise, declarative abstractions for stencil computing

A five-point stencil

• T : time

Implementation on GPU clusters

Complexity of implementation

- CPU,GPU,MPI
- Code for omputation is concise, code for parallelization isn't.
 - Problem decomposition
 - Boundary exchange
 - GPUs cannot communicate directly
 - GPU->CPU **->** CPU->GPU
- Code for optimization brings more complicacy
- Most difficult parts are nonessential for stencil computation

Procedure of boundary exchange

Overview of the framework

- Archtecture independent, global view description
- CPU,GPU,MPI code generation

.c

- Code 2 Code
- Optimization
- Auto-tuning
- Checkpointing
- Optimal resource allocation

An example of a 7-point stencil

Execution Model

Evaluation

- Evaluated the performance and scalability of Physis on TSUBAME 2.0
 - 1D/2D decomposition
 - Overlapping of boundary exchange and computation
- Target applications
 - 3D diffusion equation
 - Himeno benchmark
 - Seismic wave simulation code
 - Free surface boundary condition is not supported

Productivity

Lines of code

Weak Scalability ¹⁰⁰⁰Himeno (CFD Bench) ¹⁵⁰⁰Diffusion 3D weakweak-scaling scaling GFlops GFlops Number of GPUs Number of GPUs ¹²⁰Seismic weak-scaling GFlops Number of GPUs

Strong scalability – Himeno bench

106

Towards Auto-Tuning of Stencil Computation on GPU-accelerated Clusters

- Programming on GPU clusters gets harder because of
 - Hybrid programming with CUDA/MPI/threads
 - # of tuning parameters is increasing
 - Hiding latency

\rightarrow Auto-tuning is more important

We find the optimal parameters, such as block size, by auto-tuning \rightarrow x60 faster than 1 CPU core

- 3-HOP communication has been required, for GPU<->CPU<->GPU
- → 1-HOP method is proposed, and auto-tune between communication methods

Up to 20% speed-up with 1-HOP method

526GFlops is achieved with 32GPUs on TSUBAME 1.2

 \rightarrow x1170 faster than 1 CPU core

MapReduce for GPU-based Heterogeneous Clusters [MAPRED'2010]

Problem :

- Map Task Scheduling for efficient execution
 - Depends on running task characteristics and underlying environments
- Hybrid Map Task Scheduling
 - Automatically detects map task characteristics by monitoring
 - Scheduling map tasks to minimize overall MapReduce job execution time

DoE Exascale Targets

System attributes	"2010"		"2015"		"2018-20"	
System peak	2 PetaFlops		100-200 PetaFlops		1 ExaFlop	
Power	6 MW	1.3 MW	15 MW		20 MW	
System Memory	0.3PB	0.1PB	5 PB		32-64PB	
Node Perf	125GF	1.6TF	0.5TF	7TF	1TF	10TF
Node Mem BW	25GB/s	0.5TB/s	0.1TB/s	1TB/s	0.4TB/s	4TB/s
Node Concurrency	12	O(1000)	O(100)	O(1000)	O(1000)	O(10000)
#Nodes	18,700	1442	50,000	5,000	1 million	100,000
Total Node Interconnect BW	1.5GB/ s	8GB/s	20GB/s		200GB/s	
MTTI	O(days)		O(1 day)		O(1 day)	

#Cores & Rmax/Core on #1 Top500

- Alternating core increase vs. perf/core increase
- Next generation (10PF) will mainly be # core increase, and thereafter...

Extreme Many Core, Slow&Parallel is the Key to Low Power [Kogge08]

"Accelerator"

Special-purpose HW for accelerated computation

hvbrid

- Small production, special market, expensive
 No
- Lack of software inheritance over HW generation No
- Restriction of application area
 - Only accelerates special type/portion of computation No
 - Computation that "does not fit" impossible or slow No w/
- Restriction of programming model
 - Specialized programming model, language Improving
 - Restrictions on pointers, recursion, strucures, etc.
 - ► No OS or other system software No with hybrid

TSUBAME's Lifetime Achievements

<u>* The Top500 *</u> Six Consecutive No.1 in Japan and performance improvements 1st hetero arch. to rank in Top 10

TSUBAME in Nature and on TV

<u>* Industry Collab. Programs and Grants *</u>

MITSUBISHI CHEMICAL TECHNOLOGIES SUMITOMO CHEMICAL

NEC

Ministry of Education Innovative Industrial Usage Program

Ministry of Education Global Center of Excellence HPC Ph.D. Education Program

Microsoft HPC Institute and other vendor research collab.

CompView

AMD

Microsof

NAREGI/CyberScience Infrastructure Core Center

<u>* Supercomputing for Everyone *</u> <u>Institution-wide usage: > 1000 users,</u> <u>accounts for undergrads</u> <u>New QoS and Market-based Scheduling</u> <u>New HPC Services (Grid Services / ASP)</u> <u>General Datacenter Server Hosting via VM</u> <u>Use very little resources for</u> <u>institutional IT Consolidation</u>

You know you have a problem

Biggest Problem is Power...

Machine	CPU Cores	Watts	Peak GFLOPS	Peak MFLOPS/ Watt	Watts/ CPU Core	Ratio c.f. TSUBAME
TSUBAME(Opteron)	10480	800,000	50,400	63.00	76.34	
TSUBAME2006 (w/360CSs)	11,200	810,000	79,430	98.06	72.32	
TSUBAME2007 (w/648CSs)	11,776	820,000	102,200	124.63	69.63	1.00
Earth Simulator	5120	6,000,000	40,000	6.67	1171.88	0.05
ASCI Purple (LLNL)	12240	6,000,000	77,824	12.97	490.20	0.10
AIST Supercluster (Opteron)	3188	522,240	14400	27.57	163.81	0.22
LLNL BG/L (rack)	2048	25,000	5734.4	229.38	12.21	1.84
Next Gen BG/P (rack)	4096	30,000	16384	546.13	7.32	4.38
TSUBAME 2.0 (2010Q3/4)	160,000	810,000	1,024,000	1264.20	5.06	10.14

TSUBAME 2.0 x24 improvement in 4.5 years...? → ~ x1000 over 10 years

Bioinformatics: BLAST on GPUs

• CUDA-BLASTP (NTU)

http://www.nvidia.com/object/blastp_on_tesla.html

• GPU-BLAST (CMU)

http://eudoxus.cheme.cmu.edu/gpublast/gpublast.html

"4 times speedup on Fermi GPUs"

GPU Enabled Amber 11

- 1GPU ~= 8 Core CPU node x 4~20
 - Already in service on TSUBAME2.0
 - Waiting for Multi-GPU version presented at GTC 2010...
- Equivalent to 300,000 CPU cores on TSUBAME2.0

Assuming x10 speedup per socket

Electric Power Consumption for Multiple-GPU Applications

CFD Applications

Comparing to TSUBAME Opteron CPU 1 core,

MAX 200W/GPU

Weather Prediction: x80 (10 GPU = 1000 CPU) Lattice Boltzmann: ~ x100 Phase Field Model: x170

When we assume the acceleration is typically x100,

1 GPU < 200W for our applications

100 GPU: 20 kW 10000 CPU core of TSUBAME 1.2 : 1MW (1000kW)

1/50 Ultra low Power

TSUBAME ~ 1MW/10000CPU

d Computing Center

CompView

Aoki and Nukada "The First CUDA Programming" Textbook

GPU Computing Consortium

Established Sep. 1, 2009 in GSIC 607 Members as of Sep. 2010 8 CUDA Lectures (Hands-on) 1 International Workshop 1 Symposium (Oct., 2010) 3 Seminars by World-famous

Matsuoka, Endo, Nukada, Aoki et. al. Special Issue IPSJ Magazine 2009, "Accelerators, Reborn"

TSUBAME E-Science Journal (Vol.2 at SC10)

Supercomputing 2010

New Orleans

GREEN 50Q

TSUBAME

OKYD TECH

1

TSUBAME

TOKYO TECH

TSUBAME TSUBAME

TSUBAME

GREEN 50Q

TSUBAME

TSUBAME 2.0の全朝