EXASCALE IN 2018 REALLY?

FRANCK CAPPELLO

INRIA&UIUC

What are we talking about?

2018 Systems 2009 Difference Today & 2018 1 Eflop/s 2 Pflop/s O(1000) System peak 6 MW ~20 MW (goal) Power O(100) 32 - 64 PB 0.3 PB System memory 125 GF 1,2 or 15TF O(10) - O(100)Node performance 25 GB/s 2 - 4TB/s O(100) Node memory BW O(100) - O(1000) 12 O(1k) or 10k Node concurrency 200-400GB/s O(100) Total Node Interconnect BW 3.5 GB/s (1:4 or 1:8 from memory BW) O(100,000) or O(1M) 100M cores 18,700 O(10) - O(100)System size (nodes) 225,000 O(10,000) O(billion) [O(10) to O(100) for Total concurrency latency hiding] 15 PB O(10) - O(100)500-1000 PB (>10x system Storage memory is min) 10 0.2 TB 60 TB/s O(100) O(1 day) - O(10) MTTI days

12 cores/node

Power Challenges

Exascale Technology Roadmap Meeting San Diego California, December 2009.

•\$1M per Megawatt per year \rightarrow 20 MW Max (50 MW may be).

•Flops are not really a problem:

•FMA (fused multiply add) 100picojoules (Now), 10pj in 2018 (on 11nm lithography)

 \rightarrow Ok for architects

Memory bandwidth is critical (biggest delta in energy cost is movement of data offchip):
CPU Reading 64b operands from DRAM costs ~2000pj (now), 1000pj in 2018
→2000W in 2018 (if 10TFfops/chip) for a ratio of 0.2 byte/flop. Not feasible
→200W OK but 0.02 byte/flop (BW → 0.5 byte/flop) → /25

→ Need for more locality and less memory accesses in algorithms
 •Memory DDR3: 5000pj (read 64b word), DDR5 (2018): 2100 pj (JEDEC roandmap)
 → At 0.2 B/flop, memory will need 70MW OR 0.02 byte/flop

 \rightarrow Need to develop new technologies for 0.2 B/flop but cost will be high

•Network power consumption is critical:

•Optical links consume about 30-60pj/bit (Now), 10pj/bit in 2018

- \rightarrow globally flat bandwidth across a system: Not feasible
- \rightarrow topology choice based on power (mesh topologies have power advantages)
- ightarrow algorithms, system software, applications will need to be data locality aware

Application Challenges

Application Programming:

Hybrid multi-core (100-1000 Accelerator cores + 2-2 general purpose cores)
→ hybrid programming will be required (MPI + threads, PGAS)
Less memory per core (could become less than 1GB → 512 MB/core)
→ End of weak scaling, disruptive transition to strong scaling
Less bandwidth for each core (0.02 Byte/flop could be required)
→ Communication avoiding algorithms

Applications candidates:

- •Many demanding applications that will need development efforts (next slide)
- Uncertainty Quantification (UQ)

Accurate model results are critical for design optimization and policy making Model predictions are affected by uncertainties: data, model param. (dust cloud...) UQ includes uncertainty information in simulations to provide a confidence level UQ investigations run ensemble of computational models of different configurations \rightarrow UQ generates a "throughput" workload of O(10K) to O(100K) jobs ("transaction") However \rightarrow UQ generate a vast quantity of data (Exa Bytes), files and directories \rightarrow Database is required to keep the mapping between data, files, etc.

Application Challenges

Table 2. Algorithms expected to play a key role within select scientific applications at the exascale, characterized according to a seven dwarfs classification

Opportunity	Application area	Structured grids	Unstructured grids	FFT	Dense linear algebra	Sparse linear algebra	Particles	Monte Carlo
Material science	Molecular physics			Х	Х		Х	Х
	Nanoscale science	Х			Х		Х	Х
Earth science	Climate	Х	Х	Х		Х	Х	Х
	Environment	Х	Х			Х	Х	Х
Energy assurance	Combustion	Х			Х		Х	
	Fusion	Х	Х	Х	Х	Х	Х	Х
	Nuclear energy		Х		Х	Х		
Fundamental science	Astrophysics	Х	Х		Х	Х	Х	
	Nuclear physics				Х			
	Accelerator physics		Х			Х		
	QCD	Х						Х
Engineering design	Aerodynamics	Х	Х		Х	Х		

Resilience Challenge

Node architecture group Exascale Technology Roadmap Meeting San Diego California, December 2009:

•The current failure rates of nodes are primarily defined by market considerations rather than technology

- •Because of technology scaling, transient errors will increase by factor of 100 x to 1000x.
- ightarrow Vendors will need to harden their components

Market pressure will likely result in systems with MTTI 10x lower than today
→Today: 5-6 days for the hardware
→MTTI will be O(1 day).

However software is also a significant source of faults, errors and failures \rightarrow Some studies consider that it is the main factor reducing the full system MTTI (Oliner and J. Stearley, DSN 2008, Charng Da lu, Ph. D thesis 2005):

 \rightarrow Bad scenarios consider full system MTTI of 1h...

Resilience Challenges April 2010	Critical Path	RollBack/ Reco	Fail. Avoid.	
Uniquely Exascale: -Performance measurement and modeling in presence faults (Perf.)	x			
Exascale plus Trickle down (Exascale will drive):				
Application successful execution & correctness (Masking approach) -Better fault tolerant protocols (low overhead) -Fault isolation/confinement + specific local management (software) -Use of NV-RAM for local state storage, cache of file syst. -Replication (TMR, backup core) -Proactive actions (migration), automatic or assisted?	X X X ? Pr.	x x x	X X Š	
Application execution and result correctness (Non masking approach) -Domain Specific API and Utilities for frameworks -Application guided (level) fault management -Language, Libraries, compiler support for resilience -Runtime/OS API for fault aware programming (access to RAS, etc.) -Resilient Apps. + Numerical Libs & algo. (open question)	X Pr. X X X?	X X X X	Х	
Reliable System-Fault oblivious system software (and produce less faults)-Fault aware system software (notification/coordination backbone)-Prediction for time optimal checkpointing and migration-Fault models, event log standardization, root cause analysis-Resilient I/O, Storage and file systems-Situational awareness	X X X X X X	X	X X X X X X	
Experimental env. to stress & compare solutions Debugging under the presence of errors/failures + considering faults	X X	X	X	
Primarily Sub-Exascale (Industry will drive) -Fault isolation/confinement + local management (Hardware) -Checkpoint of Heterogeneous architecture	X X	x	Х	

Exascale in 2018

Yes some hardware will probably be there

BUT

-what applications will be able to exploit even 5-10% of it with +Strong Scaling (lower memory per core)
+Mesh topology
+0.02 Bytes / Flop (0.2 if we are lucky)
+MTBF of 1 hour (5h-10h if we are lucky)

May be ensemble calculation (UQ) is the most likely "applications" to run first at Exascale

 \rightarrow problem: this is not an "Exascale" application in the sense of a single code running over the whole computer.