
How to Write a Parallel GPU Application 

Using CUDA and Charm++

Presented by Lukasz Wesolowski



2

Outline

• GPGPUs and CUDA
• Requirements for a GPGPU API (from a 

Charm++ standpoint)
• CUDA stream approach
• Charm++ GPU Manager



3

General Purpose GPUs

• Graphics chips adapted for general purpose 
programming

• Impressive floating point performance
– 4.6 Tflop/s single precision (AMD Radeon HD 

5970)
– Compared to about 100 Gflop/s for a 3 GHz quad-

core quad-issue CPU

• Throughput oriented
• Good for large scale data parallelism



4

CUDA

• A popular hardware/software architecture for 
GPGPUs

• Supported on NVIDIA GPUs
• Programmed using C with extensions for large-

scale data parallelism
• CPU is used to offload and manage units of 

GPU work



5

API Requirements

• GPU operations should not block the CPU
– blocking wastes CPU cycles and reduces response 

time for messages

• Chares should be able to share the GPU 
without synchronizing with each other



6

• User makes CUDA calls directly in Charm++
• CUDA Streams
– allow specifying an order of execution for a set of 

asynchronous GPU operations
– Operations in different streams can overlap in 

execution

• User assigns a unique CUDA stream for each 
chare and makes polling or synchronization 
calls to determine completion of operations

Direct Approach



7

Problems with Direct Approach

• Each chare must poll for completion of GPU 
operations
– Tedious
– Inefficient

• Streams need to be carefully managed to 
allow overlap of GPU operations



8

Stream Management

• Common stream usage
CPU → GPU data transfer

kernel_call

GPU → CPU data transfer

• Third operation blocks DMA engine until 
kernel is finished

• Can be avoided by delaying GPU → CPU data 
transfer until kernel is finished
– Requires an additional polling call



9

Overview of GPU Manager

• User submits requests specifying work to be 
executed on the GPU, associated buffers, and 
callback

• System transfers memory between CPU and 
GPU, executes request, and returns through a 
callback

• GPU operations performed asynchronously
• Pipelined execution 



10

Execution of Work Requests



11

GPU Manager Advantages

• No polling calls in user code
– Simpler code
– More efficient

• System ensures overlap of GPU operations
– Scheduling of pinned memory allocations 

• GPU profiling in Projections


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

