How to Write a Parallel GPU Application
Using CUDA and Charm++

. LLINOIS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Presented by Lukasz Wesolowski

PARALLEL

PROGRAMMING LAB

DEPT.OF COMPUTER SCIENCE, UNIVERSITY OF ILLINOIS

PPL

Ul c




Outline

* GPGPUs and CUDA

* Requirements for a GPGPU API (from a
Charm++ standpoint)

* CUDA stream approach

* Charm++ GPU Manager

T PPL
U10cC




General Purpose GPUs

Graphics chips adapted for general purpose
programming
Impressive floating point performance

— 4.6 Tflop/s single precision (AMD Radeon HD
5970)

— Compared to about 100 Gflop/s for a 3 GHz quad-
core quad-issue CPU

Throughput oriented
Good for large scale data parallelism

PPL

U1uc




CUDA

A popular hardware/software architecture for
GPGPUs

Supported on NVIDIA GPUs

Programmed using C with extensions for large-
scale data parallelism

CPU is used to offload and manage units of
GPU work

PPL

U1uc




APl Requirements

* GPU operations should not block the CPU

— blocking wastes CPU cycles and reduces response
time for messages

* Chares should be able to share the GPU
without synchronizing with each other

PPL

U1uc




I

Direct Approach

* User makes CUDA calls directly in Charm++

* CUDA Streams

— allow specifying an order of execution for a set of
asynchronous GPU operations

— Operations in different streams can overlap in
execution
* User assigns a unique CUDA stream for each

chare and makes polling or synchronization
calls to determine completion of operations

PPL

U1uc




Problems with Direct Approach

* Each chare must poll for completion of GPU
operations
— Tedious
— Inefficient

* Streams need to be carefully managed to
allow overlap of GPU operations

T PPL
U10cC




Stream Management

* Common stream usSage
CPU - GPU data transfer

kernel call
GPU — CPU data transfer

* Third operation blocks DMA engine until
kernel is finished

* Can be avoided by delaying GPU - CPU data
transfer until kernel is finished

T — Requires an additional polling call —
uiuc




Overview of GPU Manager

User submits requests specifying work to be
executed on the GPU, associated buffers, and
callback

System transfers memory between CPU and
GPU, executes request, and returns through a
callback

GPU operations performed asynchronously

Pipelined execution

PPL

U1uc




Execution of Work Requests

Time
wr 0 |
wr 1 [E—— |
Wr 2 S

. memory transfer to device

kernel execution

. memory transfer from device

10

PPL

U1uc




GPU Manager Advantages

* No polling calls in user code
— Simpler code
— More efficient

* System ensures overlap of GPU operations
— Scheduling of pinned memory allocations

* GPU profiling in Projections

PPL

U1uc




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

