
Scalable Fault Tolerance 
with Charm++

Esteban Meneses
Gengbin Zheng
Celso L. Mendes
Laxmikant V. Kalé

Wednesday, April 28, 2010



Contents

• Fault Tolerance Techniques in Charm++

• Recent Developments

• Future Work

2

Wednesday, April 28, 2010



A problem hard to ignore

3

Installed System Processors SMTBF

2000 ASCI White 8,192 40.0 h

2001 PSC Lemieux 3,016 9.7 h

2002 NERSC Seaborg 6,656 351.0 h

2002 ASCI Q 8,192 6.5 h

2003 Google 15,000 1.2 h

2006 Blue Gene/L 131,072 147.8 h

Extract taken from High-End Computing Resilience [1]

Wednesday, April 28, 2010



We will live with failures

2484 separate node crashes on Jaguar during 
537 days period (Aug-22-2008 to Feb-10-2010)

4.62 failures per day

What about Sequoia with 1.6 million cores 
or an exascale machine with 100 million 

cores?

4

Wednesday, April 28, 2010



Overview of Charm++ 
Fault Tolerant 
Techniques

Wednesday, April 28, 2010



Proactive Fault Tolerance

• Use knowledge about impending faults.

• Evacuate objects from processors that 
may fail soon.

Processor A Processor B Processor C

Charm++
Objects

6

Sayantan Chakravorty, Celso L. Mendes, Laxmikant V. Kale,  Proactive Fault 
Tolerance in MPI Applications via Task Migration,  In Proceedings of HIPC 
2006, LNCS volume 4297, page 485

Wednesday, April 28, 2010



Checkpoint/Restart
• Double in-memory checkpoint.

• Synchronized checkpoint.

Processor A
(buddy of B)

Processor B Processor C

Charm++
Objects

Memory
Overhead

7

Processor D

Gengbin Zheng, Lixia Shi, Laxmikant V. Kale,  FTC-Charm++: An In-Memory 
Checkpoint-Based Fault Tolerant Runtime for Charm++ and 
MPI,  Cluster 2004

Wednesday, April 28, 2010



Message Logging
• Every message is stored in the sender log.

• Pessimistic: messages and determinants 
have to be stored before delivery.

Processor A
(buddy of B)

Processor B Processor C

Charm++
Objects

Memory
Overhead

m m2

m m2

8

Sayantan Chakravorty, Laxmikant V. Kale,  A Fault Tolerance Protocol with 
Fast Fault Recovery,  Proceedings of the 21st International Parallel and Distributed 
Processing Symposium, 2007, Long Beach California

Processor D

Wednesday, April 28, 2010



Comparison
(Reactive Approaches)

Technique Memory 
Overhead

Communication 
Overhead Recovery Time

Checkpoint/
Restart ☻ ☺ ☹
Message 
Logging ☹ ☹ ☺

9

Wednesday, April 28, 2010



Recent Developments

Wednesday, April 28, 2010



Checkpoint/Restart 
Optimization

• Discard old messages to resume progress 
as soon as possible.

• Improve quiescence detection.

• Combine message to update home location 
of objects.

11

Wednesday, April 28, 2010



Results

12

0

0.055

0.11

0.165

0.22

512 1024

0.22

0.17

Checkpoint Time

T
im

e 
(s

ec
on

ds
)

Number of cores

0

5.6

11.3

16.9

22.5

512 1024

2.81.63

21.09

Restart Time

T
im

e 
(s

ec
on

ds
)

Number of cores

Application: Molecular3D (APOA1 ~100K atoms)
Data Size: 624 KB per core (512 cores), 351 KB per core (1024 cores)

Wednesday, April 28, 2010



• Memory overhead reduction: 

• Team-based approach.

• Latency overhead reduction:

• Causal protocol.

Message Logging 
Optimization

13

Wednesday, April 28, 2010



Team-based Approach

Processor A
(buddy of B)

Processor B Processor C

Charm++
Objects

Memory
Overhead

m m2

m2

Team X Team Y

14

• Goal: reduce memory overhead of message log.

• Only messages crossing team boundaries are 
logged.

Wednesday, April 28, 2010



Processor Teams
• Each team acts as a recovery unit:

• All members must checkpoint in a coordinated fashion. 

• If one member fails, the whole team rolls back.

15

1 k N
Team Size

Checkpoint/RestartMessage Logging

Esteban Meneses, Celso L. Mendes and Laxmikant V. Kale,  Team-based 
Message Logging: Preliminary Results,  3rd Workshop on Resiliency in High 
Performance Computing (Resilience) in Clusters, Clouds, and Grids (CCGRID 2010)

Wednesday, April 28, 2010



Results

16

Wednesday, April 28, 2010



Results (cont.)

17

Wednesday, April 28, 2010



Recovery Time

18

Wednesday, April 28, 2010



Further Developments

• Highly connected objects should belong 
to the same team.

• Exploit communication graph, dynamic groups, 
team-aware load balancer.

• Teams can address some correlated 
failures.

• Applicable to other message-logging 
protocols.

Wednesday, April 28, 2010



Reducing Latency
Object α

Object β

Object γ

Object α

Object β

Object γ

mPessimistic
Message
Logging

Causal
Message
Logging

m2

m

m3⊕{m}

20

m2

Wednesday, April 28, 2010



Causal Protocol

• No need to block the delivery of a 
message.

• No need to contact remote processor for 
a local message.

• Metadata is piggybacked in application’s 
messages.

• Recovery may involve more processors.

21

Wednesday, April 28, 2010



Early Results

Wednesday, April 28, 2010



Future Work

Wednesday, April 28, 2010



Future Work Roadmap
• Bigger Charm++ applications.

• Enhance Proactive Approach with 
prediction schemes.

• Enrich Team-based Approach.

• Smarter team formation.

• Coupling with load balancer.

• SMP-aware fault tolerance.

24

Wednesday, April 28, 2010



Acknowledgments

• Department of Energy – FastOS Program.

• Colony-1 and Colony-2 projects.

• NSF/NCSA

• Deployment efforts specific for Blue Waters.

• Machine allocation

• TeraGrid MRAC – NCSA, TACC, ORNL

• Greg Bronevetsky from LLNL.

25

Wednesday, April 28, 2010



References

[1] Nathan DeBardeleben, James Laros, John 
Daly, Stephen Scott, Christian Engelmann and 
Bill Harrod. High End Computing 
Resilience: Analysis of Issues Facing 
the HEC Community and Path-
Forward for Research and 
Development.

Wednesday, April 28, 2010



Q&A

27

Wednesday, April 28, 2010



Thank You!

Wednesday, April 28, 2010


