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A problem hard to ignore
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Installed System Processors SMTBF

2000 ASCI White 8,192 40.0 h

2001 PSC Lemieux 3,016 9.7 h

2002 NERSC Seaborg 6,656 351.0 h

2002 ASCI Q 8,192 6.5 h

2003 Google 15,000 1.2 h

2006 Blue Gene/L 131,072 147.8 h

Extract taken from High-End Computing Resilience [1]
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We will live with failures

2484 separate node crashes on Jaguar during 
537 days period (Aug-22-2008 to Feb-10-2010)

4.62 failures per day

What about Sequoia with 1.6 million cores 
or an exascale machine with 100 million 

cores?
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Overview of Charm++ 
Fault Tolerant 
Techniques
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Proactive Fault Tolerance

• Use knowledge about impending faults.

• Evacuate objects from processors that 
may fail soon.

Processor A Processor B Processor C

Charm++
Objects
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Sayantan Chakravorty, Celso L. Mendes, Laxmikant V. Kale,  Proactive Fault 
Tolerance in MPI Applications via Task Migration,  In Proceedings of HIPC 
2006, LNCS volume 4297, page 485
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Checkpoint/Restart
• Double in-memory checkpoint.

• Synchronized checkpoint.

Processor A
(buddy of B)

Processor B Processor C

Charm++
Objects

Memory
Overhead
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Processor D

Gengbin Zheng, Lixia Shi, Laxmikant V. Kale,  FTC-Charm++: An In-Memory 
Checkpoint-Based Fault Tolerant Runtime for Charm++ and 
MPI,  Cluster 2004

Wednesday, April 28, 2010



Message Logging
• Every message is stored in the sender log.

• Pessimistic: messages and determinants 
have to be stored before delivery.

Processor A
(buddy of B)
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Objects

Memory
Overhead

m m2

m m2
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Sayantan Chakravorty, Laxmikant V. Kale,  A Fault Tolerance Protocol with 
Fast Fault Recovery,  Proceedings of the 21st International Parallel and Distributed 
Processing Symposium, 2007, Long Beach California

Processor D
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Comparison
(Reactive Approaches)

Technique Memory 
Overhead

Communication 
Overhead Recovery Time

Checkpoint/
Restart ☻ ☺ ☹
Message 
Logging ☹ ☹ ☺
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Recent Developments
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Checkpoint/Restart 
Optimization

• Discard old messages to resume progress 
as soon as possible.

• Improve quiescence detection.

• Combine message to update home location 
of objects.
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Results
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Application: Molecular3D (APOA1 ~100K atoms)
Data Size: 624 KB per core (512 cores), 351 KB per core (1024 cores)
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• Memory overhead reduction: 

• Team-based approach.

• Latency overhead reduction:

• Causal protocol.

Message Logging 
Optimization
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Team-based Approach

Processor A
(buddy of B)

Processor B Processor C

Charm++
Objects

Memory
Overhead

m m2

m2

Team X Team Y
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• Goal: reduce memory overhead of message log.

• Only messages crossing team boundaries are 
logged.
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Processor Teams
• Each team acts as a recovery unit:

• All members must checkpoint in a coordinated fashion. 

• If one member fails, the whole team rolls back.
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1 k N
Team Size

Checkpoint/RestartMessage Logging

Esteban Meneses, Celso L. Mendes and Laxmikant V. Kale,  Team-based 
Message Logging: Preliminary Results,  3rd Workshop on Resiliency in High 
Performance Computing (Resilience) in Clusters, Clouds, and Grids (CCGRID 2010)
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Results
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Results (cont.)
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Recovery Time
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Further Developments

• Highly connected objects should belong 
to the same team.

• Exploit communication graph, dynamic groups, 
team-aware load balancer.

• Teams can address some correlated 
failures.

• Applicable to other message-logging 
protocols.
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Reducing Latency
Object α

Object β

Object γ

Object α

Object β

Object γ
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Causal Protocol

• No need to block the delivery of a 
message.

• No need to contact remote processor for 
a local message.

• Metadata is piggybacked in application’s 
messages.

• Recovery may involve more processors.
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Early Results
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Future Work
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Future Work Roadmap
• Bigger Charm++ applications.

• Enhance Proactive Approach with 
prediction schemes.

• Enrich Team-based Approach.

• Smarter team formation.

• Coupling with load balancer.

• SMP-aware fault tolerance.
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Q&A
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Thank You!
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