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Motivation for NUMA Platforms 

● The number of cores per processor is 
increasing

● Hierarchical shared memory 
multiprocessors

● cc-NUMA is coming back (NUMA factor)
● AMD hypertransport and Intel QuickPath



  



  

NUMA Problem
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Memory contention 
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● Bandwidth
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NUMA Problem

● Memory access types:
● Read and write
● Different costs

● Write operations are more expensive
● Special memory policies

● On NUMA, data distribution matters!



  

NUMA support on Operating 
Systems

● Operating systems have some support 
for NUMA machines

● Physical memory allocation:
● First-touch, next-touch

● Libraries and tools to distribute data



  

Memory Affinity on Linux

● The actual support for NUMA on Linux:
● Physical memory allocation:

– First-touch: first memoy access

● NUMA API: developers do all!
– System call to bind memory pages
– Numactl, user-level tool to bind memory and to 

pin threads
– Libnuma an interface to place memory pages 

on physical memory



  

● Portability over different platforms
● Shared memory
● Distributed memory

● Architecture abstraction => programmer 
productivity

● Virtualization and transparence

Charm++ Parallel 
Programming System



  

● Data management:
● Stack and Heap

● Memory allocation based on malloc

● Isomalloc: 
● based on mmap system call
● allows threads migration

● What about physical memory?

Charm++ Parallel 
Programming System



  

NUMA Support on Charm++

● Our approach 
● Study the impact of memory affinity on 

charm++
● Bind virtual memory pages to memory 

banks

● Based on three parts:
● +maffinity option
● Interleaved heap
● NUMA-aware memory allocator



  

Impact of Memory Affinity on 
charm++

● Study the impact of memory affinity
● different memory allocators and memory 

policies

● Memory allocators 
● ptmalloc and NUMA-aware tcmalloc

● Memory policies
● First-touch, bind and interleaved

● NUMA machine: AMD Opteron 



  

AMD Opteron

● NUMA machine
● AMD Opteron
● 8 (2 cores) x 2.2GHz 

processors
● Cache L2  (2Mbytes)
● Main memory 32Gbytes
● Low latency for local 

memory access
● Numa factor: 1.2 – 1.5
● Linux 2.6.32.6 
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+maffinity option

● set memory affinity for processes or 
threads

● Based on Linux NUMA system call 
● Set the process/thread memory policy
● Bind, preferred and interleave are used in 

our implementation

● Must be used with +setcpuaffinity option



  

./charmrun prog  +p6  +setcpuaffinity +coremap  0,2,4,8,12,13 
+maffinity +nodemap  0,0,1,2,3,3 +mempol preferred
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Interleaved Heap

● Based on mbind Linux system call

● Spread data over the NUMA nodes

● The objective is to reduce memory 
contention by optimizing bandwidth

● One mbind per mmap
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Heap
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Heap
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First Results

● Charm++ version:
● 6.1.3
● net-linux-amd64

● Applications: 
● Molecular2D 
● Kneighbor (1000 iterations - msg 1024)



  

First Results

● NUMA machine
● AMD Opteron
● 8 (2 cores) x 2.2GHz 

processors
● Cache L2  shared 

(2Mbytes)
● Main memory 32Gbytes
● Low latency for local 

memory access
● Numa factor: 1.2 – 1.5
● Linux 2.6.32.6 



  



  

Intel Xeon

● NUMA machine
● Intel EM64T
● 4 (24 cores) x 2.66GHz 

processors
● Shared cache L3 (16MB)
● Main memory 192Gbytes
● High latency for local 

memory access
● Numa factor: 1.2 - 5
● Linux  2.6.27
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HeapAlloc

● NUMA-aware memory allocator

● Reduces lock contention and optimizes 
data locality

● Several memory policies: applied 
considering the access mode (read, write 
or read/write)



  

HeapAlloc

● Default memory policy is bind

● High-level interface: glibc compatible, 
any modifications in source code

● Low-level interface: allows developers to 
manage their heaps
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Thread running on 
node#0 calls malloc

Memory Node#0

   core0                           core1                  core2                       core3

Memory is allocated 
from heap 'core0'

Thread running on 
node#0 calls malloc

Thread running on 
node#3 calls free for 
memory allocated by 
thread  

Memory is returned 
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Conclusions

● Charm++ performance on NUMA can be 
improved
● Tcmalloc NUMA-aware
● +maffinity 
● Interleaved Heap

● Proposal of an optimized memory 
allocator for NUMA machines



  

Future Work

● Conclude the integration of HeapAlloc 
in charm++

● Study the impact of different memory 
allocators on charm++

● What about several memory policies?
● Bind, interleave, next-touch, 

skew_mapp .....



  

Questions?

pousa@imag.fr
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