

NUMA Support for Charm++
Does memory affinity matter?

Christiane Pousa Ribeiro
Maxime Martinasso

Jean-François Méhaut

Outline

● Introduction
● Motivation
● NUMA Problem

● Support NUMA for Charm++

● First Results

● Conclusion and Future work

Motivation for NUMA Platforms

● The number of cores per processor is
increasing

● Hierarchical shared memory
multiprocessors

● cc-NUMA is coming back (NUMA factor)
● AMD hypertransport and Intel QuickPath

NUMA Problem

 Node#0 Node#1

 Node#2 Node#3

 Node#4 Node#5

 Node#6 Node#7● Remote access and
Memory contention

● Optimizes:
● Latency
● Bandwidth

● Assure memory
affinity

NUMA Problem

 Node#0 Node#1

 Node#2 Node#3

 Node#4 Node#5

 Node#6 Node#7● Remote access and
Memory contention

● Optimizes:
● Latency
● Bandwidth

● Assure memory
affinity

NUMA Problem

 Node#0 Node#1

 Node#2 Node#3

 Node#4 Node#5

 Node#6 Node#7● Remote access and
Memory contention

● Optimizes:
● Latency
● Bandwidth

● Assure memory
affinity

NUMA Problem

 Node#0 Node#1

 Node#2 Node#3

 Node#4 Node#5

 Node#6 Node#7● Remote access and
Memory contention

● Optimizes:
● Latency
● Bandwidth

● Assure memory
affinity

NUMA Problem

● Remote access and
Memory contention

● Optimizes:
● Latency
● Bandwidth

● Assure memory
affinity Node#0 Node#1

 Node#2 Node#3

 Node#4 Node#5

 Node#6 Node#7

NUMA Problem

● Remote access and
Memory contention

● Optimizes:
● Latency
● Bandwidth

● Assure memory
affinity Node#0 Node#1

 Node#2 Node#3

 Node#4 Node#5

 Node#6 Node#7

NUMA Problem

● Memory access types:
● Read and write
● Different costs

● Write operations are more expensive
● Special memory policies

● On NUMA, data distribution matters!

NUMA support on Operating
Systems

● Operating systems have some support
for NUMA machines

● Physical memory allocation:
● First-touch, next-touch

● Libraries and tools to distribute data

Memory Affinity on Linux

● The actual support for NUMA on Linux:
● Physical memory allocation:

– First-touch: first memoy access

● NUMA API: developers do all!
– System call to bind memory pages
– Numactl, user-level tool to bind memory and to

pin threads
– Libnuma an interface to place memory pages

on physical memory

● Portability over different platforms
● Shared memory
● Distributed memory

● Architecture abstraction => programmer
productivity

● Virtualization and transparence

Charm++ Parallel
Programming System

● Data management:
● Stack and Heap

● Memory allocation based on malloc

● Isomalloc:
● based on mmap system call
● allows threads migration

● What about physical memory?

Charm++ Parallel
Programming System

NUMA Support on Charm++

● Our approach
● Study the impact of memory affinity on

charm++
● Bind virtual memory pages to memory

banks

● Based on three parts:
● +maffinity option
● Interleaved heap
● NUMA-aware memory allocator

Impact of Memory Affinity on
charm++

● Study the impact of memory affinity
● different memory allocators and memory

policies

● Memory allocators
● ptmalloc and NUMA-aware tcmalloc

● Memory policies
● First-touch, bind and interleaved

● NUMA machine: AMD Opteron

AMD Opteron

● NUMA machine
● AMD Opteron
● 8 (2 cores) x 2.2GHz

processors
● Cache L2 (2Mbytes)
● Main memory 32Gbytes
● Low latency for local

memory access
● Numa factor: 1.2 – 1.5
● Linux 2.6.32.6

0

500

1000

1500

2000

2500

3000

3500

kNeighbor Application - charm++ multicore64
Different Memory Allocators

ptmalloc
tcmalloc NUMA
ptmalloc + setcpu
tcmalloc NUMA +
setcpu

Memory Allocators

av
er

ag
e

tim
e

(u
s)

8 16
0

50

100

150

200

kNeighbor Application - charm++ multicore64

(100 iteration)

original
bind
interleave

Number of coresA
ve

ra
ge

 t
im

e
-

3-
kN

 it
er

at
io

n
(u

s)

numactl

 8 16
0

20

40

60

80

100

120
Molecular2D - charm++ multicore64

original
bind
interleave

Number of cores

st
ep

 ti
m

e
 (

m
s/

st
e

p
)

50
51
52
53
54
55
56
57
58
59
60

Molecular 2D - charm++ multicore64

Different Memory Allocators

ptmalloc
tcmalloc NUMA
ptmalloc +
setcpu
tcmalloc NUMA
+ setcpu

Memory Allocators

B
en

ch
m

ar
k

T
im

e
(m

s)

numactl

+maffinity option

● set memory affinity for processes or
threads

● Based on Linux NUMA system call
● Set the process/thread memory policy
● Bind, preferred and interleave are used in

our implementation

● Must be used with +setcpuaffinity option

./charmrun prog +p6 +setcpuaffinity +coremap 0,2,4,8,12,13
+maffinity +nodemap 0,0,1,2,3,3 +mempol preferred

MEM

MEM

MEM

MEM

 CPU CPU

 CPU CPU

 Node#2 Node#3

 Node#0 Node#1

Interleaved Heap

● Based on mbind Linux system call

● Spread data over the NUMA nodes

● The objective is to reduce memory
contention by optimizing bandwidth

● One mbind per mmap

Heap

MEM

MEM

MEM

MEM

 CPU CPU

 CPU CPU

 Node#2 Node#3

 Node#0 Node#1

Memory page

Heap

MEM

MEM

MEM

MEM

 CPU CPU

 CPU CPU

 Node#2 Node#3

 Node#0 Node#1

Memory page

Heap

MEM

MEM

MEM

MEM

 CPU CPU

 CPU CPU

 Node#2 Node#3

 Node#0 Node#1

Memory page

Heap

MEM

MEM

MEM

MEM

 CPU CPU

 CPU CPU

 Node#2 Node#3

 Node#0 Node#1

Heap

MEM

MEM

MEM

MEM

 CPU CPU

 CPU CPU

 Node#2 Node#3

 Node#0 Node#1

Virtual memory pages
binded to physical
memory banks

First Results

● Charm++ version:
● 6.1.3
● net-linux-amd64

● Applications:
● Molecular2D
● Kneighbor (1000 iterations - msg 1024)

First Results

● NUMA machine
● AMD Opteron
● 8 (2 cores) x 2.2GHz

processors
● Cache L2 shared

(2Mbytes)
● Main memory 32Gbytes
● Low latency for local

memory access
● Numa factor: 1.2 – 1.5
● Linux 2.6.32.6

Intel Xeon

● NUMA machine
● Intel EM64T
● 4 (24 cores) x 2.66GHz

processors
● Shared cache L3 (16MB)
● Main memory 192Gbytes
● High latency for local

memory access
● Numa factor: 1.2 - 5
● Linux 2.6.27

24 48 64
0

50000

100000

150000

200000

250000

300000

350000

Charm - Memory Affinity

Kn Application

original
maffinity
interleave

Number of Cores

T
im

e
 (

u
s)

24 48 64
0

10

20

30

40

50

60

70

Charm - Memory affinity

Mol2d Application

original
maffinity
interleave

Number of Cores

T
im

e
 in

 m
s

HeapAlloc

● NUMA-aware memory allocator

● Reduces lock contention and optimizes
data locality

● Several memory policies: applied
considering the access mode (read, write
or read/write)

HeapAlloc

● Default memory policy is bind

● High-level interface: glibc compatible,
any modifications in source code

● Low-level interface: allows developers to
manage their heaps

MEM

MEM

MEM

MEM

 CPU CPU

 CPU CPU

 Node#2 Node#3

 Node#0 Node#1

One heap per core of a node

Memory Node#2

MEM

MEM

MEM

MEM

 CPU CPU

 CPU CPU

 Node#2 Node#3

 Node#0 Node#1

Thread running on
node#0 calls malloc

Memory Node#0

 core0 core1 core2 core3

Memory is allocated
from heap 'core0'

Thread running on
node#0 calls malloc

Thread running on
node#3 calls free for
memory allocated by
thread

Memory is returned
to heap 'core0'

Conclusions

● Charm++ performance on NUMA can be
improved
● Tcmalloc NUMA-aware
● +maffinity
● Interleaved Heap

● Proposal of an optimized memory
allocator for NUMA machines

Future Work

● Conclude the integration of HeapAlloc
in charm++

● Study the impact of different memory
allocators on charm++

● What about several memory policies?
● Bind, interleave, next-touch,

skew_mapp

Questions?

pousa@imag.fr

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

