
Automating Topology Aware 
Mapping for Supercomputers

Abhinav Bhatele, Gagan Gupta
Laxmikant V. Kale

1

1



Application Topologies

Patch

Compute

Proxy

2

2



Interconnect Topologies

• Three dimensional meshes

• 3D Torus: Blue Gene/L, Blue Gene/P, Cray XT4/5

• Trees

• Fat-trees (Infiniband) and CLOS networks (Federation)

• Dense Graphs

• Kautz Graph (SiCortex), Hypercubes

• Future Topologies?

• Blue Waters, Blue Gene/Q

3

3



The Mapping Problem

• Applications have a communication topology and 
processors have an interconnect topology

• Definition: Given a set of communicating parallel 
“entities”, map them on to physical processors to 
optimize communication

• Goals:

• Balance computational load

• Minimize communication traffic and hence contention 

4

4



Scope of this work

• Currently we are focused on 3D mesh/torus machines

• For certain classes of applications

5

Communication 
bound

Computation 
bound

Latency tolerant Latency sensitive

5



Application specific mapping

0
0.075
0.15

0.225
0.3

512 1024 2048 4096 8192

T
im

e 
pe

r 
st

ep
 (

s)

Number of cores

Default
Topology

6

OpenAtom

A. Bhatele, E. Bohm, and L. V. Kale. A Case Study of Communication 
Optimizations on 3D Mesh Interconnects. In Euro-Par, LNCS 5704, pages 
1015–1028, 2009. Distinguished Paper Award.

A. Bhatele, L. V. Kale and S. Kumar, Dynamic Topology Aware Load 
Balancing Algorithms for Molecular Dynamics Applications, In 23rd ACM 

International Conference on Supercomputing (ICS), 2009.

6



Application specific mapping

Inner Brick

Outer Brick

Patch 1

Patch 2

0
0.075
0.15

0.225
0.3

512 1024 2048 4096 8192

T
im

e 
pe

r 
st

ep
 (

s)

Number of cores

Default
Topology

6

0
3.75
7.5

11.25
15

512 1024 2048 4096 8192 16384T
im

e 
pe

r 
st

ep
 (

m
s)

Number of cores

Topology Oblivious
TopoAware Patches
TopoAware LDBs

NAMDOpenAtom

A. Bhatele, E. Bohm, and L. V. Kale. A Case Study of Communication 
Optimizations on 3D Mesh Interconnects. In Euro-Par, LNCS 5704, pages 
1015–1028, 2009. Distinguished Paper Award.

A. Bhatele, L. V. Kale and S. Kumar, Dynamic Topology Aware Load 
Balancing Algorithms for Molecular Dynamics Applications, In 23rd ACM 

International Conference on Supercomputing (ICS), 2009.

6



Automatic Mapping

• Obtaining the processor topology and the application 
communication graph

• Pattern matching to identify regular patterns

• 2D/3D near-neighbor communication

• A suite of heuristics: the right strategy invoked 
depending on the communication scenario:

• Regular communication

• Irregular communication

7

7



Topology Discovery

• Topology Manager API: for 3D interconnects (Blue 
Gene, XT)

• Information required for mapping:

• Physical dimensions of the allocated job partition

• Mapping of ranks to physical coordinates and vice versa

• On Blue Gene machines such information is available 
and the API is a wrapper

• On Cray XT machines, jump several hoops to get this 
information and make it available through the same API

http://charm.cs.uiuc.edu/~bhatele/phd/TopoMgrAPI.tar.gz
8

8

http://charm.cs.uiuc.edu/~bhatele/phd/TopoMgrAPI.tar.gz
http://charm.cs.uiuc.edu/~bhatele/phd/TopoMgrAPI.tar.gz


Application communication graph 

• Several ways to obtain the graph

• MPI applications:

• Graph obtained from a run can only be used in a subsequent run

• Profiling tools (IBM’s HPCT tools)

• Charm++ applications:

• Instrumentation at runtime

• Enables dynamic mapping for changing communication graphs

9

9



Pattern Matching
• We want to identify simple communication patterns

Pattern matching to identify 
simple communication 
patterns such as 2D/3D 
near-neighbor graphs 

10

Pr
oc

es
so

rs

0

31

10



Communication Graphs

• Regular communication:

• POP (Parallel Ocean Program): 2D Stencil like computation

• WRF (Weather Research and Forecasting model): 2D Stencil

• MILC (MIMD Lattice Computation): 4D near-neighbor

• Irregular communication:

• Unstructured mesh computations: FLASH, CPSD code

• Many other classes of applications

11

11



Mapping Regular Graphs

• Maximum Overlap (MXOVLP)

• Expand from Corner (EXCO)

• Affine Mapping (AFFN)

12

Object Graph: 7 x 4
Processor Graph: 4 x 7

12



Mapping Regular Graphs

• Maximum Overlap (MXOVLP)

• Expand from Corner (EXCO)

• Affine Mapping (AFFN)

12

Object Graph: 7 x 4
Processor Graph: 4 x 7

12



Mapping Regular Graphs

• Maximum Overlap (MXOVLP)

• Expand from Corner (EXCO)

• Affine Mapping (AFFN)

12

Object Graph: 7 x 4
Processor Graph: 4 x 7

12



Mapping Regular Graphs

• Maximum Overlap (MXOVLP)

• Expand from Corner (EXCO)

• Affine Mapping (AFFN)

12

Object Graph: 7 x 4
Processor Graph: 4 x 7

12



Mapping Regular Graphs

• Maximum Overlap (MXOVLP)

• Expand from Corner (EXCO)

• Affine Mapping (AFFN)

12

Object Graph: 7 x 4
Processor Graph: 4 x 7

12



Mapping Regular Graphs

• Maximum Overlap (MXOVLP)

• Expand from Corner (EXCO)

• Affine Mapping (AFFN)

12

Object Graph: 7 x 4
Processor Graph: 4 x 7

12



Mapping Regular Graphs

• Maximum Overlap (MXOVLP)

• Expand from Corner (EXCO)

• Affine Mapping (AFFN)

12

Object Graph: 7 x 4
Processor Graph: 4 x 7

12



Mapping Regular Graphs

• Maximum Overlap (MXOVLP)

• Expand from Corner (EXCO)

• Affine Mapping (AFFN)

12

Object Graph: 7 x 4
Processor Graph: 4 x 7

12



Mapping Regular Graphs

• Maximum Overlap (MXOVLP)

• Expand from Corner (EXCO)

• Affine Mapping (AFFN)

12

Object Graph: 7 x 4
Processor Graph: 4 x 7

12



Example Mapping

Object Graph: 6 x 11
Processor Graph: 11 x 6

13

Aleliunas, R. and Rosenberg, A. L. On Embedding Rectangular 
Grids in Square Grids. IEEE Trans. Comput., 31(9):907–913, 1982

13



Example Mapping

Object Graph: 6 x 11
Processor Graph: 11 x 6

13

Aleliunas, R. and Rosenberg, A. L. On Embedding Rectangular 
Grids in Square Grids. IEEE Trans. Comput., 31(9):907–913, 1982

13



Example Mapping

Object Graph: 6 x 11
Processor Graph: 11 x 6

13

Aleliunas, R. and Rosenberg, A. L. On Embedding Rectangular 
Grids in Square Grids. IEEE Trans. Comput., 31(9):907–913, 1982

13



Example Mapping

Object Graph: 6 x 11
Processor Graph: 11 x 6

13

Aleliunas, R. and Rosenberg, A. L. On Embedding Rectangular 
Grids in Square Grids. IEEE Trans. Comput., 31(9):907–913, 1982

13



Example Mapping

Object Graph: 6 x 11
Processor Graph: 11 x 6

13

Aleliunas, R. and Rosenberg, A. L. On Embedding Rectangular 
Grids in Square Grids. IEEE Trans. Comput., 31(9):907–913, 1982

13



Example Mapping

Object Graph: 6 x 11
Processor Graph: 11 x 6

13

Aleliunas, R. and Rosenberg, A. L. On Embedding Rectangular 
Grids in Square Grids. IEEE Trans. Comput., 31(9):907–913, 1982

13



Example Mapping

Object Graph: 6 x 11
Processor Graph: 11 x 6

13

Aleliunas, R. and Rosenberg, A. L. On Embedding Rectangular 
Grids in Square Grids. IEEE Trans. Comput., 31(9):907–913, 1982

13



Example Mapping

Object Graph: 6 x 11
Processor Graph: 11 x 6

13

Aleliunas, R. and Rosenberg, A. L. On Embedding Rectangular 
Grids in Square Grids. IEEE Trans. Comput., 31(9):907–913, 1982

13



Example Mapping

Object Graph: 6 x 11
Processor Graph: 11 x 6

13

Aleliunas, R. and Rosenberg, A. L. On Embedding Rectangular 
Grids in Square Grids. IEEE Trans. Comput., 31(9):907–913, 1982

13



Different mapping solutions

14

Object graph of 14 x 6 to processor graph of 7 x 12

Algorithms in order: MXOVLP, MXOV+AL, EXCO, COCE, AFFN, STEP

14



Evaluation Metric: Hop-bytes

• Weighted sum of message sizes where the weights are 
the number of links traversed by each message

• Indicator of the communication traffic and hence 
contention on the network

• Previously used metric: maximum dilation

15

di = distance
bi = bytes
n = no. of messages

15



Evaluation

16

0

7.5

15

22.5

30

14X6 to 7X12 16X16 to 8X32 27X35 to 45X21

H
op

s 
pe

r 
pr

oc
es

so
r

Different mapping configurations

MXOVLP MXOV+AL
EXCO COCE
AFFN STEP
Lower Bound

16



Results: WRF

• Performance 
improvement 
negligible on 256 and 
512 cores

• On 1024 cores:

• Hops reduce by: 64%

• Time for communication 
reduces by 45%

• Performance improves 
by 17%

0

1

2

3

4

256 512 1024 2048

A
ve

ra
ge

 h
op

s 
pe

r 
by

te
 p

er
 c

or
e

Number of nodes

Default
Topology
Lower Bound

17

17



Mapping Irregular Graphs

18

Object graph: 90 nodes Processor Mesh: 10 x 9

18



Two different scenarios

• There is no spatial information associated with the node

• Option 1: Work without it

• Option 2: If we know that the simulation has a geometric 
configuration, try to guess the structure of the graph

• We have geometric coordinate information for each 
node

• Use coordinate information to avoid crossing of edges and for other 
optimizations

19

19



No coordinate information

• Breadth first traversal (BFT)

• Start with a random node and one end of the processor mesh

• Map nodes as you encounter them around the centroid of their 
mapped neighbors

• Max heap traveral (MHT)

• Start with a random node and one end/center of the mesh

• Put neighbors of a mapped node into the heap (node at the top is the 
one with maximum mapped neighbors)

• Map elements in the heap one by one around the centroid of their 
mapped neighbors

20

20



Mapping visualization

21

BFT MHT

21



With coordinate information
• Affine Mapping (AFFN)

• Stretch/shrink the object graph (based on coordinates of nodes) to 
map it on to the processor grid

• In case of conflicts for the same processor, spiral around that 
processor

• Corners to Center (COCE)

• Use four corners of the object graph based on coordinates

• Start mapping simultaneously from all sides

• Either a simple BFT-type scheme

• Or a MHT-style heuristic

22

22



Mapping visualization

23

AFFN COCE

23



Results: simple2D

24

0

150000

300000

450000

600000

90 nodes 256 nodes 1024 nodes

H
op

 b
yt

es

Default BFT
MHT AFFN
COCE Lower bound

24



Completely Distributed Mapping

• Problem (in content of Charm++):

• n objects to be placed on p processors (n much greater than p)

• Computational loads of objects are distributed

• Each object should make its decision by itself

• Start with simple cases:

• 1D ring communication

• 2D stencil communication

25

25



Distributed strategies
• 1D ring to a line:

• Perform a parallel prefix sum between chares and send total load to all 
objects (chares)

• Each chare now decides which processor it should be on

• 2D stencil to a 2D mesh:

• Linearize using Hilbert ordering

• Perform 1D parallel prefix

• Or perform a parallel prefix in 2D (on all rows and 
columns)

• Gives (x, y) coordinates for processor on which the node should go

26

26



Summary and Future Work

• Developing an automatic mapping framework

• Topology discovery: Topology Manager API

• Pattern matching

• Regular graphs

• Irregular graphs

• Suite of heuristics for mapping

• Completely distributed strategies

• Topology aware hierarchical load balancers (NAMD)

27

27


