
April 28, 2010 Charm Workshop Keynote 1

"An Off-The-Wall, Possibly
CHARMing View of Future Parallel

Application Development

Jim Browne
University of Texas

browne@cs.utexas.edu

April 28, 2010 Charm Workshop Keynote 2

"An Off-The-Wall, Possibly CHARMing View
of Future Parallel Application Development"

Development methods for HPC applications change slowly
and will continue to change slowly. It is thus safe to
suggest radical changes because the chance they will be
adopted quickly is low. This talk will sketch a few
possible futures for HPC application development which
are considerably different from current practice. The first
part of the talk will sketch possible influences of
development practices and the second some responses
to these influences including, components, self-
management, a merger of grid and HPC developments,
tools based on expert systems technology.

April 28, 2010 Charm Workshop Keynote 3

Application Development Process
Workflow Design

Algorithm Choice

Code Design

Code Development

Verification and Validation

Architecture Adaptation
and Optimization

Evolution
Performance Analysis

Reliability Analysis

April 28, 2010 Charm Workshop Keynote 4

Future

• More complex execution environments
• Fundamental assumptions of underlying

machine reliability may erode
• More complex system-oriented

applications spanning multiple disciplines
and time scales

What do these trends mean for application
development tools?

April 28, 2010 Charm Workshop Keynote 5

What do these trends mean for
application development tools?

• Greater breadth and depth of expert
knowledge is needed

• Complexity of each step in the
development process and thus complexity
of tools will increase

• Tools may have to span multiple layers of
software stack.

• User need (and demand?) for effective
support will increase

April 28, 2010 Charm Workshop Keynote 6

Example: Core/Chip/Node Parallelism
• Core/Chip/Node Architecture

– Chips with 2N cores, N = 2,4,8,…
• Each core has memory hierarchy

– Nodes with 2M chips, M = 2,4,8….
• Nodes may be asymmetric and heterogeneous

– Processes/Threads per node = K*N*M
• Performance Limitations

– Performance at core level – Resource optimization
– Performance at chip level – Resource optimization +

thread management
– Performance at node level – thread management

April 28, 2010 Charm Workshop Keynote 7

Example: Monitoring for Reliability

Printk/syslog message logging rationalization

April 28, 2010 Charm Workshop Keynote 8

Ongoing Studies

• NSF Reports
– http://www.nsf.gov/pubs/2007/nsf0728/index.j

sp?org=NSF
• Exascale

– http://www.exascale.org/iesp/Main_Page
• RelXLayer

– http://www.relxlayer.org/

April 28, 2010 Charm Workshop Keynote 9

Fundamental Principles
for Tools

• Facility Capture of User Knowledge
• Guide Users to Desirable Choices

– Interactive application of expert knowledge
• Automate Common (and Complex) Tasks

– Automation Based on Expert Knowledge
• Algorithm choice
• Architectural adaptation and performance

evaluation
• …………

April 28, 2010 Charm Workshop Keynote 10

Personal View

• Tools should guide users to (hierarchical)
components with unitary functionality,
controlled interfaces and simple control
structures

• Why?
– Facilitate each step of development

• Testing and verification of correctness
• Performance optimization

– ……..

April 28, 2010 Charm Workshop Keynote 11

Application Development Process
Workflow Design

Algorithm Choice

Code Design

Code Development

Verification and Validation

Architecture Adaptation
and Optimization

Evolution
Performance Analysis

Reliability Analysis

April 28, 2010 Charm Workshop Keynote 12

Tool Support – State of the Art

• Each Stage/Phase – Typically supported
by different tools which don’t communicate
or interact.

• Some tools difficult to use and require
expert knowledge.

• Fundamental principles enabling effective
development not always followed by tool
developers.

April 28, 2010 Charm Workshop Keynote 13

Tool Support – State of the Art

• Each Stage/Phase supported by different tool
which don’t communicate or interact.

• Some tools difficult to use and require expert
knowledge.

• Fundamental principles enabling effective
development not always followed by tool
developers.

• Of Course, NONE OF THESE NASTY THINGS
ARE TRUE of CHARM TOOL SET!

April 28, 2010 Charm Workshop Keynote 14

Tool Support – State of the Art

• Each Stage/Phase – Typically supported by
different tools which don’t communicate or
interact.

• Some tools difficult to use and require expert
knowledge.

• Fundamental principles enabling effective
development not always followed by tool
developers.

What should we (tool developers) being doing to
meet future challenges?

April 28, 2010 Charm Workshop Keynote 15

End to End Lifecycle Support
• Seamless end to end lifecycle support

(customizable by application domain)
• Charm++ supports (to some degree):

– Code Design
– Reliability
– Performance Analysis
– Implementation
– Verification
– Architectural adaptation and optimization
– …………..

April 28, 2010 Charm Workshop Keynote 16

Future for Tool Builders
• Increasing complexity of execution

environments and applications will make it
exceedingly difficult for a single tool
developer (except maybe IBM with OPM)
to develop comprehensive tool chains
– Many domains of specialized knowledge will

be required
– Tool complexity will rise and managability will

be an issue

April 28, 2010 Charm Workshop Keynote 17

How To Develop Comprehensive
Development Environments?

• Collaborative across university and open
source groups will be needed.

• How to integrate tools?
– Framework for Tool Integration?
– Development of standard interfaces and

interaction protocols for tools?
– Form development consortia?
– Have integration a goal for tool builders?

April 28, 2010 Charm Workshop Keynote 18

Eclipse Framework

• How many use Eclipse?
• How many think Eclipse solves all these

problems?
• How many think Eclipse is a potential

framework for solutions to all these
problems?

April 28, 2010 Charm Workshop Keynote 19

Integration of Specialized Tools
with Development Environments

• .Integratable tools must have very simple user
interfaces

• Must work directly with outputs of development
environment

• Must add significant value
• Example – Integrate PerfExpert: An automatic

architectural adaptation and optimization with
Charm++

April 28, 2010 Charm Workshop Keynote 20

Intracore, Intrachip,Intranode
Optimization for Charm++

• Charm++ : Asynchrony, thread
management, communication
optimization, load balancing

• PerfExpert: Intrachip, intranode resource
optimization,

• Charm++ + PerfExpert
• PerfExpert built for integration with

development environments

April 28, 2010 Charm Workshop Keynote 21

PerfExpert

• Tool for architectural adaptation and
performance optimization for multicore
chips and multichip architectures

• Automates most of intra-node
performance optimization for multicore
chips and multichip nodes of large
clusters.

April 28, 2010 Charm Workshop Keynote 22

Project Goal
• Automate detection and characterization of

performance bottlenecks
– At core, chip, and node level

• Suggest optimizations for each bottleneck
– Including code examples and compiler

switches
– Future: apply suggestions automatically

• Simplicity is paramount
– Trivial user interface
– Easily understandable output

April 28, 2010 Charm Workshop Keynote 23

PerfExpert Approach
• Gather performance counter

measurements
– Multiple runs with HPCToolkit
– Sampling-based results for procedures and

loops
• Combine results

– Check variability, runtime, consistency, and
integrity

• Compute and output assessment
– Only for most important code sections
– Correlate results from different thread counts

April 28, 2010 Charm Workshop Keynote 24

PerfExpert v1.0
• Current features

– Automatic bottleneck detection (uses
HPCToolkit)

– Extensive list of suggested optimizations with
examples

– Simple and intuitive interface
• Current capabilities

– Based on general PAPI performance counters
– Intra-node performance
– Focus is on Ranger

• Single command line execution

April 28, 2010 Charm Workshop Keynote 25

Bottleneck Identification and
Characterization

• Diagnoses for potential bottlenecks
• FP, Branch, L1 cache, L2 cache, L3

cache, TLB, DRAM
• Automatically chooses measurements,

does code executions, accumulates
measurements, runs expert system with
architecture specific rules and parameters
to identify and characterize bottlenecks at
procedure and loop nest levels.

April 28, 2010 Charm Workshop Keynote 26

PerfExpert Performance Metric
• Cycles Per Instruction (CPI)

– Compute upper bounds on CPI contribution for
various groups (memory and TLB accesses,
instruction groups)

• (BR_INS * BR_lat + BR_MSP * BR_miss_lat) / TOT_INS
• (L1_DCA * L1_dlat + L2_DCA * L2_lat + L2_DCM * Mem_lat) /

TOT_INS

• Benefits
– Highlights key aspects and hides misleading

details
– Relative metric (less susceptible to non-

determinism)
E il t ibl t i l d dditi l

PerfExpert: a Core/Chip/Node Performance Assessment Tool for HPC Systems 26

April 28, 2010 Charm Workshop Keynote 27

Optimizations

• Suggests possible code optimizations
depending on characterization of
bottleneck.

• May offer specific code structures in some
cases.

• Will suggest compiler switches for
particular procedures.

April 28, 2010 Charm Workshop Keynote 28

PerfExpert Output
PerfExpert v0.9
Copyright (c) 2009, The University of Texas at Austin. All rights

reserved.
usage: PerfExpert.perl input [input]

PerfExpert v0.9
Copyright (c) 2009, The University of Texas at Austin. All rights

reserved.
usage: PerfExpert.perl input [input]

total runtime of mmm1.csv is 0.03 seconds

matrixproduct (53.5% of the total runtime)

-
WARNING: The runtime is too short to gather meaningful measurements.

cvtas_t_to_a (22.6% of the total runtime)

-
WARNING: The cycle count variation is 33.3%, making the results unreliable.
WARNING: The runtime is too short to gather meaningful measurements.

total runtime of mmm1.csv is 0.03 seconds

matrixproduct (53.5% of the total runtime)

-
WARNING: The runtime is too short to gather meaningful measurements.

cvtas_t_to_a (22.6% of the total runtime)

-
WARNING: The cycle count variation is 33.3%, making the results unreliable.
WARNING: The runtime is too short to gather meaningful measurements.

April 28, 2010 Charm Workshop Keynote 29

PerfExpert Output for MMM
total runtime of mmm2.csv is 166.00 seconds
Suggestions on how to alleviate performance bottlenecks are available at:
http://users.ices.utexas.edu/~burtscher/research/PerfExpert/
matrixproduct (99.9% of the total runtime)

-
performance assessment :

great.....good......okay......bad.......problematic
overall :

>>>
data accesses :

>>>
instruction accesses : >>>>>>>
floating-point instr. :

>>>
branch instructions : >>
data TLB :

>>>
instruction TLB :

total runtime of mmm2.csv is 166.00 seconds
Suggestions on how to alleviate performance bottlenecks are available at:
http://users.ices.utexas.edu/~burtscher/research/PerfExpert/
matrixproduct (99.9% of the total runtime)

-
performance assessment :

great.....good......okay......bad.......problematic
overall :

>>>
data accesses :

>>>
instruction accesses : >>>>>>>
floating-point instr. :

>>>
branch instructions : >>
data TLB :

>>>
instruction TLB :

April 28, 2010 Charm Workshop Keynote 30

PerfExpert Output for Mangll
total runtime of mangll_dgae_snell_N3a_4.csv is 196.22 seconds
total runtime of mangll_dgae_snell_N3a_16.csv is 75.70 seconds

Suggestions on how to alleviate performance bottlenecks are available at:
http://users.ices.utexas.edu/~burtscher/research/PerfExpert/

dgae_RHS (runtimes are 136.93s and 45.27s)

-
performance assessment :

great.....good......okay......bad.......problematic
overall : >>>>>>>>>>>>>>>>>>>>>>2222222
data accesses :

>>>
instruction accesses : >>>>>>>>>
floating-point instr. : >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>1
branch instructions : >>
data TLB :
instruction TLB :

total runtime of mangll_dgae_snell_N3a_4.csv is 196.22 seconds
total runtime of mangll_dgae_snell_N3a_16.csv is 75.70 seconds

Suggestions on how to alleviate performance bottlenecks are available at:
http://users.ices.utexas.edu/~burtscher/research/PerfExpert/

dgae_RHS (runtimes are 136.93s and 45.27s)

-
performance assessment :

great.....good......okay......bad.......problematic
overall : >>>>>>>>>>>>>>>>>>>>>>2222222
data accesses :

>>>
instruction accesses : >>>>>>>>>
floating-point instr. : >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>1
branch instructions : >>
data TLB :
instruction TLB :

April 28, 2010 Charm Workshop Keynote 31

Suggestions with Examples
If floating-point instructions are a problem
• Reduce the number of floating-point instructions
a) eliminate floating-point operations through distributivity

d[i] = a[i] * b[i] + a[i] * c[i]; → d[i] = a[i] * (b[i] + c[i]);
• Avoid divides
b) compute the reciprocal once outside of loop and use multiplication inside the loop

loop i {a[i] = b[i] / c;} → cinv = 1.0 / c; loop i {a[i] = b[i] * cinv;}
• Avoid square roots
c) compare squared values instead of computing the square root

if (x < sqrt(y)) {} → if ((x < 0.0) || (x*x < y)) {}
• Speed up divide and square-root operations
d) use float instead of double data type if loss of precision is acceptable

double a[n]; → float a[n];
e) allow the compiler to trade off precision for speed

try the “-prec-div”, “-prec-sqrt”, and “-pc32” compiler flags

If floating-point instructions are a problem
• Reduce the number of floating-point instructions
a) eliminate floating-point operations through distributivity

d[i] = a[i] * b[i] + a[i] * c[i]; → d[i] = a[i] * (b[i] + c[i]);
• Avoid divides
b) compute the reciprocal once outside of loop and use multiplication inside the loop

loop i {a[i] = b[i] / c;} → cinv = 1.0 / c; loop i {a[i] = b[i] * cinv;}
• Avoid square roots
c) compare squared values instead of computing the square root

if (x < sqrt(y)) {} → if ((x < 0.0) || (x*x < y)) {}
• Speed up divide and square-root operations
d) use float instead of double data type if loss of precision is acceptable

double a[n]; → float a[n];
e) allow the compiler to trade off precision for speed

try the “-prec-div”, “-prec-sqrt”, and “-pc32” compiler flags

April 28, 2010 Charm Workshop Keynote 32

Mangll Optimization Case Study
If data accesses are a problem
• Reduce the number of memory accesses
a) copy data into local scalar variables and operate on the local copies
b) recompute values rather than loading them if doable with few operations
c) vectorize the code
• Improve the data locality
d) componentize important loops by factoring them into their own subroutines
e) employ loop blocking and interchange (change the order of the memory accesses)
f) reduce the number of memory areas (e.g., arrays) accessed simultaneously
g) split structs into hot and cold parts, where the hot part has a pointer to the cold part
• Other
h) use smaller types (e.g., float instead of double or short instead of int)
i) for small elements, allocate an array of elements instead of each element individually
j) align data, especially arrays and structs
k) pad memory areas so that temporal elements do not map to the same set in the cache

If data accesses are a problem
• Reduce the number of memory accesses
a) copy data into local scalar variables and operate on the local copies
b) recompute values rather than loading them if doable with few operations
c) vectorize the code
• Improve the data locality
d) componentize important loops by factoring them into their own subroutines
e) employ loop blocking and interchange (change the order of the memory accesses)
f) reduce the number of memory areas (e.g., arrays) accessed simultaneously
g) split structs into hot and cold parts, where the hot part has a pointer to the cold part
• Other
h) use smaller types (e.g., float instead of double or short instead of int)
i) for small elements, allocate an array of elements instead of each element individually
j) align data, especially arrays and structs
k) pad memory areas so that temporal elements do not map to the same set in the cache

April 28, 2010 Charm Workshop Keynote 33

Eliminate Inapplicable Suggestions

April 28, 2010 Charm Workshop Keynote 34

Try Remaining Suggestions

April 28, 2010 Charm Workshop Keynote 35

Related Work
• Automatic bottleneck analysis and

remediation
– PERCS project at IBM Research

• Less automation for bottleneck identification and
analysis

• Not open source
– PERI Autotuning project
– Parallel Performance Wizard

• Event trace analysis, program instrumentation
• Analysis tools with automated diagnosis
• Projects that target multicore optimizations

April 28, 2010 Charm Workshop Keynote 36

Conclusions

• Charm++ and its off-shoots and out-
growths comprise the most
comprehensive parallel development
environment in existence and has mostly
been developed by one laboratory

• The complexity of future execution
environments and applications will make it
difficult to continue “going it alone” even
for Charm++

April 28, 2010 Charm Workshop Keynote 37

Conclusions - Continued
• There are many complementary tool

development efforts.
• University and open source tool builders

need to develop mechanisms for
collaboration to develop coordinated,
comprehensive lifecycle coverage tools for
future systems and applications

• Charm++ is a natural leader for such an
effort.

	"An Off-The-Wall, Possibly CHARMing View of Future Parallel Application Development�
	"An Off-The-Wall, Possibly CHARMing View of Future Parallel Application Development"
	Application Development Process
	Future
	What do these trends mean for application development tools?�
	Example: Core/Chip/Node Parallelism
	Example: Monitoring for Reliability
	Ongoing Studies
	Fundamental Principles�for Tools
	Personal View
	Application Development Process
	Tool Support – State of the Art
	Tool Support – State of the Art
	Tool Support – State of the Art
	End to End Lifecycle Support
	Future for Tool Builders
	How To Develop Comprehensive Development Environments?
	Eclipse Framework
	Integration of Specialized Tools with Development Environments
	Intracore, Intrachip,Intranode Optimization for Charm++
	PerfExpert
	Project Goal
	PerfExpert Approach
	PerfExpert v1.0
	Bottleneck Identification and Characterization
	PerfExpert Performance Metric
	Optimizations
	PerfExpert Output
	PerfExpert Output for MMM
	PerfExpert Output for Mangll
	Suggestions with Examples
	Mangll Optimization Case Study
	Eliminate Inapplicable Suggestions
	Try Remaining Suggestions
	Related Work
	Conclusions
	Conclusions - Continued

