Orion Sky Lawlor
olawlor@acm.org
U. Alaska Fairbanks
2009-04-16

http://lawlor.cs.uaf.edu/ -

® “"The purpose of computing is insight,
not nhumbers!” r. Hamming

® Vision is a key tool for analyzing and
understanding the worid

" Your eyes are your brain’s highest
bandwidth input device
= Vision: >300MB/s
¢ 1600x1200 24-bit 60Hz

= Sound: <1 MB/s
e 44KHz 24-bit 5.1 Surround sound

" Touch: <1 KB/s (?)
" Smell/taste: <10 per second

® Plus, pictures look really cool...

Prior work:
GPUs, NetFEM, impostors

B Graphics cards are fast

" But not at rendering lots of tiny
geometry:
e 1M primitives/frame OK
e 1G pixels/frame OK
e 1G primitives/frame not OK

® Problems with billions of
primitives do not utilize current
graphics hardware well

® Graphics cards only have a few
gigabytes of RAM (vs. parallel
machine, with terabytes of RAM)

oo

Fillrate (Gigapixels/second)

©O = N W S 1 O
—

1 | 10 100
Side Length (pixels)

k

NVIDIA GeForce 8800M GTS

geometry simultaneously

® Multiple processors can render

Processors

4

8

16

24

32

48

MParticles/second

7.14

[5.71

32.71

49.18

65.49

81.68

48 nodes of Hal cluster: 2-way 550MHz Pentium III nodes connected with fast ethernet

® Achieved rendering speedup for large

particle dataset

client

® Can store huge datasets in memory
® BUT: No display on parallel machine!
® Ignores cost of shipping images to

® Link to client is too slow!

Dlspla

WAY TOO SLOWI
Cannot ship \
frames to

client at full
framerate/ full

resolution 100 GB/s

Graphics Card
Memory

100 MB/s ’—‘l

. Gigabit Ethernet
Parallel Machine Desktop Machme

&Hﬂﬂﬂﬂﬂ

® Serial OpenGL Client
= Parallel FEM Framework Server
® Client connects

® Server sends client the current
FEM mesh (nodes and elements)

" Includes all attributes
" Client can display, rotate, examine

" Not just for postmortem!
e Making movies on the fly
e Dumping simulation output
e Monitoring running simulation

® Connect to running parallel machine
® See, e.g., wave dispersion off a crack

M2 VEaity (15}

o.rr7

0.0293

a.00

169

0.0

Parallel Impostors Technique

= Key observation: impostor images
don’t depend on one another

® So render impostors in parallel!

" Uses the speed and memory of the
parallel machine

e Fine grained-- lots of potential parallelism
" Geometry is partitioned by impostors
e No “"shared model” assumption
" Reassemble world on serial client

" Uses rendering bandwidth of client
graphics card

= Impostor reuse cuts required network
bandwidth to client

e Only update images when necessary
" Impostors provide latency tolerance 1t

Client/Server Architecture

Rendering
-

Geometry

Imposter

Parallel Machine

Imposter Shipping
-

Network

Warping/
Compositing
— -

Final Image

Client Machine

® Parallel machine can be anywhere on network
" Keeps the problem geometry
® Renders and ships nhew impostors as needed
® Impostors shipped using TCP/IP sockets
® CCS & PUP protocol [Jyothi and Lawlor 04]
® Works over NAT/firewalled networks
® Client sits on user’s desk
® Sends server new viewpoints
® Receives and displays new impostors 12

® Latency tolerance: client never waits for server
= Displays existing impostors at fixed framerate
= Even if they’re out of date

= Prefers spatial error (due to out of date impostor) to
temporal error (due to dropped frames)

" Implementation uses OpenGL for display
= Two separate kernel threads for network handling

User Interface ———— Display Thread
I
_________ I
I I
Outgoi :
o New ! utgoing | !

Viewpoints ' Network Thread ' | Warping/
______________ | Compositin&
_______________ |

New : Incoming — L
[— | :
Impostors ' Network Thread Lo]

Network to Server Client Machine

New work:
liveViz pixel transport

Basic model: LiveViz

B Serial 2D Client
® Parallel Charm++ Server
® Client connects

® Server sends client the current
2D image pixels (just pixels)

" Can be from a 3D viewpoint
(liveViz3D mode)
"= Can be color (RGB) or grayscale

" Recently extended to support JPEG
compressed network transport

e Big win on slow networks!

15

Charm++ library
Visualization tool

Inspect your
program’s current
state

Java client runs on
any machine

You code the
image generation

Sending request [vlmage

-~ Parallel Data Vi=ualization [

2D and 3D modes

LiveViz Request Model

Client GUI
ata Visualization T

. ‘arallel Data Yis

LiveViz Server Library

LiveViz Application

*Client sends request

*Server code broadcasts request to application
*Application array element render image pieces
*Server code assembles full 2D image

*Server sends 2D image back to client

*Client displays image

LiveViz Request Model

Client GUI

1= Parallel Data Yis

LiveViz Server Library

LiveViz Application

*Client sends request
*Server code broadcasts request to application
*Application array element render image pieces

*Server code assembles full 2D image
*Server

*Client displays image Bottleneck!

LiveViz Compressed requests

Client GUI
ata Visualization T

4= Parallel Data Vis

LiveViz Server Library

LiveViz Application

*Client sends request

*Server code broadcasts request to application
*Application array element render image pieces
*Server code assembles full 2D image

*Server compresses 2D image to a JPEG
*Server sends JPEG to client

*Client decompresses and displays image

LiveViz Compressed requests

Window Size No Compression Compression
256x256 333 fps 25 fps
512x512 166 fps 24 1ps
1024x1024 50 fps 15 fps
2048x2048 13 fps 4 fps

*On a gigabit network, JPEG compression
is CPU-bound, and just slows us down!

‘Compression hence optional

LiveViz Compressed requests

Window Size No Compression [Compression
256x256 6 fps 22 1ps
512x512 2 ips 15 fps
1024x1024 <1 fps 13 fps
2048x2048 << fps 4 fps

*On a slow 2MB/s wireless or WAN network,
uncompressed liveViz is network bound

‘Here, JPEG data transport is a big win!

New work:
Cosmology Rendering

>=20 bytes/particle
=> 1 GB of data

Look up mass in color table

Large Particle Rendering

®

Rendering process (in practice)

For each particle:
Project 3D particle onto 2D screen
Keep maximum mass at each pixel
Ship image to client
Apply color table to 2D image at client

iendering (2D)

7 s S S S S S S S
/7 S S S S S S LSS

/ 7z 7 7z ZL 7z Lz S
/ Z 7

S S S Sl

&@ T T T
B L L Ll Ll Ll Ll S S S

A S S
— L L Ll S S
L L L Ll Ll sl 2 S

A = a5 o A
L S Sl sl
S L S S S S

L L Ll Ll L Ll L L
e A A L L

7/ 3 W S S S
7 S S S SO S
»‘..\MH = A

i L L L

A Y S S A A d
\.\\\\\\\\\\\\\\\\\

“.\\l‘.\“ﬂ!‘\.\i‘“i‘t\
S S Sl

S A S S P A
Ol Ll il Ll S S S

CLE 2222 222227 7 7 7
S S S SIS

VL 7S S S/
Hg\\\\\\\\Nmi

7z 7z L L L L LSS
/L L L L L L L LS
7 Z 7 7z 7z Z 7z Z Z S

e

r P o L LS
ETTETEOY,

e L LT e
F & & A o0 LY oo ave O & O O

o O & & & & & &

Slices of 3D Volume

29

Stack of 2D Slices

‘Hey, that's just a 2D image!
*So we can use liveViz:

Render slices In parallel

Assemble slices across processors
(Optionally) JPEG compress image
Ship across network to (new) client

Stack of 2D Slices;,

Volume Impostors Technique

= 2D impostors are flat, and can't rotate

® 3D voxel dataset can be rendered
from any viewpoint on the client

® Practical problem:

" Render voxels into a 2D image on
the client by drawing slices with
OpenGL

= Store maximum across all slices:
glBlendEquation(GL_MAX);

" To look up (rendered) maximum in
color table, render slices to texture
and run a programmable shader

31

Volume Impostors: GLSL Gode

® GLSL code to look up the rendered color in
our color table texture:

varying vec2 texcoords;
uniform sampler2D rendered, color_table;
void main()

{

vecd
rend=texture2D(rendered,texcoords

);
gl_FragColor =
texture2D(color_table,

vec2(rend.r+0.5/255,0));

New Work:
MPIglut

oAll modern computing is parallel

® Multi-Core CPUs, Clusters
e Athlon 64 X2, Intel Core2 Duo

" Multiple Multi-Unit GPUs
e nVidia SLI, ATI CrossFire

® Multiple Displays, Disks, ...
eBut languages and many existing
applications are sequential

= Software problem: run existing
serial code on a parallel machine

" Related: easily write parallel code

- -

ESeveral p
devices

EOne large

| @ | g | Qy :
e s e e T - . s
o —— | N
e T g — - =
C - e LS - = iy -
- - P | o kT
- 2 £ Sm P 1 i i o=
x — - - i
- < N _' = 5 ¥ = 1-‘
. ot - e = A
s - -
—. : - m
= Y \V, e |
- i

9000 x 4506
resolution

35+ Megapixels

MPlglut: The hasic idea

eUsers compile their OpenGL/glut
application using MPIglut, and it
“just works” on the powerwall

eMPIglut's version of glutInit runs
a separate copy of the application
for each powerwall screen

eMPIglut intercepts glutlnit,
glViewport, and broadcasts user
events over the network

eMPIglut's glViewport shifts to
render only the local screen

MPlglut uses glut sequential code
oeGL Utilities Toolkit

" Portable window, event, and GUI
functionality for OpenGL apps

" De facto standard for small apps

" Several implementations: Mark
Kilgard original, FreeGLUT, ...

" Totally sequential library, until now!

eMPIglut intercepts several calls
" But many calls still unmodified

" We run on a patched freeglut 2.4
e Minor modification to window creation

Paraliel Rendering Taxonomy

eMolnar's influential 1994 paper

" Sort-first: send geometry across
network before rasterization (GLX/
DMX, Chromium)

= Sort-middle: send scanlines across
network during rasterization

" Sort-last: send rendered pixels
across the network after rendering
(Charm++ liveViz, IBM's Scalable
Graphics Engine, ATI CrossFire)

Paraliel Rendering Taxonomy

Expanded taxonomy:

" Send-event (MPIglut, VR Juggler)

e Send only user events (mouse clicks,
keypresses). Just kilobytes/sec!

= Send-database

e Send application-level primitives, like
terrain model. Can cache/replicate data!

" Send-geometry (Molnar sort-first)
" Send-scanlines (Molnar sort-middle)
® Send-pixels (Molnar sort-last)

MPIglut Code & Runtime Changes

#include <GL/glut.h>

void display(void) {
glBegin (GL TRIANGLES); ... glEnd();
glutSwapBuffers() ;

}

void reshape(int x size,int y size) {
glViewport(0,0,x size,y size);
glLoadIdentity() ;
gluLookAt(...) ;

}

int main(int argc,char *argv[]) {
glutInit(&argc,argv) ;
glutCreateWindow (“Ello!"”) ;
glutMouseFunc(...);

1grlut.h>

#include <GL

void display (veid) {
glBegin (GL TYRIANGLES); ... glEnd();
glutSwanRuffers () -

} This is the only source change.
V°ldl Or, you can just copy mpiglut.h

gu?YEE_Y_QE'F old glut.h header!

gluLookAt(...)

}

int main(int argc,char *argv[]) {
glutInit(&argc,argv) ;
glutCreateWindow (“Ello!”) ;
glutMouseFunc(...) ;

#include <GL/mpiglut.h>

void display(void) {
glBegin (GL TRIANGLES); ... glEnd();
glutSwapBuffers() ;

}
void reshape(int x size,int y size) {
glViewport(0,0,x size,y size);

GiLga MPIglut starts a separate copy
77" of the program (a “backend”)
L to drive each powerwall screen
int maint (int argc,char *argv[]) {

sarge,azgv) ;
glutCreateWindow (“Ello!”) ;
glutMouseFunc(...) ;

}

#include <GL/mpiglut.h>

void display(void) {
glBegin (GL TRIANGLES); ... glEnd();
glutSwapBuffers() ;

}
void reshape(int x size,int y size) {
glViewport(0,0,x size,y size);
9o Mouse and other user input
glu
} events are collected and sent
. across the network.
int md: Each backend gets identical user

919 events (collective dellvery)

glutCicacewiiiuow \ LdLauv:
glutMouseFunc|{...) ;

MPlglut Runtime GChanges: Sync

#include <GL/mpiglut.h>
void display(void) {

glBegin (GL TRIANGLES); ... glEnd() ;
glutSwapBuffers() ;

}
void re{gfpe(int X size,int y size) {
glVielWwport(0,0,x size,y size);
gllc Frame display is (optionally)

: 91" synchronized across the cluster

int main(int argc,char *argv[]) {
glutInit(&argc,argv) ;
glutCreateWindow (“Ello!”) ;
glutMouseFunc(...) ;

#include <GL/mpiglut.h>

void display(void) {
glBegin (GL TRIANGLES); ... glEnd();
glutSwapBuffers() ;

- " User code works only in global
int m: coordinates, but MPIglut adjusts
glu OpenGL's projection matrix

91" to render only the local screen

giUlcciouscruiicCy .

#include <GL/mpiglut.h>

ngegln(GL TRIANGLES) ; . glEnd() ;

gliISwapBuffers()

}
void ¥ MPIglut does NOT intercept or
glvi
11 Interfere with rendering calls,
g1ul. SO programmable shaders,
} vertex buffer objects,
framebuffer objects, etc
int mas:
51+ all run at full performance

glutCreateW1ndow(“Ello'”)
glutMouseFunc(...);

MPlglut Assumptions/Limitations

eEach backend app must be able
to render its part of its screen

" Does not automatically imply a
replicated database, if application
uses matrix-based view culling

eBackend GUI events (redraws,
window changes) are collective

" All backends must stay in synch

= Automatic for applications that are
deterministic function of events
e Non-synchronized: files, network, time

MPlglut: Bottom Line

eTiny source code change

eParallelism hidden inside MPIglut
= Application still “feels” sequential

eFairly major runtime changes
® Serial code now runs in parallel (1)

= Multiple synchronized backends
running in parallel

® User input events go across network

" OpenGL rendering coordinate
system adjusted per-backend

" But rendering calls are left alone

MPIglut Application Performance

Performance Testing

eMPIglut programs perform about
the same on 20 screens as they do
on 1 screen

eWe compared performance
against two other packages for
running unmodified OpenGL apps:

" DMX: OpenGL GLX protocol
interception and replication
(MPIglut gets screen sizes via DMX)

" Chromium: libgl OpenGL rendering
call interception and routing

basic

soar

UAF CS Bioinformatics Powerwall
Switched Gigabit Ethernet Interconnect
10 Dual-Core 2GB Linux Machines:

7 nVidia QuadroFX 3450

3 nVidia QuadroFX 1400

vy
N N
e
~wrTv—-

tex, tex_obj VIx, vtx_obj

1000 | 1

Delivered Performance (fps)

1 10
Number of Screens and CPUs (MPIglut)

Delivered Performance (fps)

ﬂlll’ﬂlllllllll TllﬂSOI’I I'eriormance

1000 |

Number of Screens and CPUs (Chromium)

Horrm Wi Koo REEEEEEEE ¥ *----- *
(3 _____________________ _O‘-._‘
[H oo emmmr e e, =
..:r:.:,@:_:‘h“
] basic —— S
$ - —obj =~ .
vix_obj % o, B
tex - B - ©
vix -—m-- -
soar --o - " .

1 10

Delivered Performance (fps)

ﬂlll’ﬂlllllllll TllﬂSOI’I I'eriormance

1000 |

Number of Screens and CPUs (Chromium)

1000 ¢ , 1 ———

Delivered Performance (fps)

1 10
Number of Screens and CPUs (DMX)

eMPIglut: an easy route to high-
performance parallel rendering

eHiding parallelism inside a library
is a broadly-applicable technique
" THREADIrectX? OpenMPQt?

oStill much work to do:

" Multicore / multi-GPU support

" Need better GPGPU support (tiles,
ghost edges, load balancing)

" Need load balancing (AMPIglut!)

eSolution: Move the rendering
for load balance, but you've

got to move the finished pixels
back for display!

Future Work: Load Balancing

ecAMPIglut: principle of persistence
should still apply

eBut need cheap way to ship back
finished pixels every frame

eExploring GPU JPEG compression
" DCT + quantize: really easy
" Huffman/entropy: really hard

" Probably need a CPU/GPU split
¢ 10000+ MB/s inside GPU
1000+ MB/s on CPU
e 100+ MB/s on network

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

