
 1

Parallel Rendering In the GPU Era

Orion Sky Lawlor
olawlor@acm.org

U. Alaska Fairbanks
2009-04-16

http://lawlor.cs.uaf.edu/
8

 2

Importance of Computer Graphics
 “The purpose of computing is insight,

not numbers!” R. Hamming

 Vision is a key tool for analyzing and
understanding the world

 Your eyes are your brain’s highest
bandwidth input device
 Vision: >300MB/s

• 1600x1200 24-bit 60Hz
 Sound: <1 MB/s

• 44KHz 24-bit 5.1 Surround sound
 Touch: <1 KB/s (?)
 Smell/taste: <10 per second

 Plus, pictures look really cool...

Prior work:
GPUs, NetFEM, impostors

 4

GPU Rendering Drawbacks
 Graphics cards are fast

 But not at rendering lots of tiny
geometry:
• 1M primitives/frame OK
• 1G pixels/frame OK
• 1G primitives/frame not OK

 Problems with billions of
primitives do not utilize current
graphics hardware well

 Graphics cards only have a few
gigabytes of RAM (vs. parallel
machine, with terabytes of RAM)

 5

Graphics Card: Usable Fill Rate

Small
triangles

Large
triangles

1 10 100 1000
0

1

2

3

4

5

6

7

8

Side Length (pixels)

F
il

lr
a

te
 (

G
ig

a
p

ix
e

ls
/s

e
co

n
d

)

NVIDIA GeForce 8800M GTS

 6

Parallel Rendering Advantages
 Multiple processors can render

geometry simultaneously

 Achieved rendering speedup for large
particle dataset

 Can store huge datasets in memory
 BUT: No display on parallel machine!
 Ignores cost of shipping images to

client

48 nodes of Hal cluster: 2-way 550MHz Pentium III nodes connected with fast ethernet

 7

Parallel Rendering Disadvantage

Parallel Machine Desktop Machine

Display

100 MB/s
Gigabit Ethernet

100 GB/s
Graphics Card
 Memory

 Link to client is too slow!

Cannot ship
frames to
client at full
framerate/ full
resolution

WAY TOO SLOW!

 8

Basic model: NetFEM
 Serial OpenGL Client
 Parallel FEM Framework Server
 Client connects
 Server sends client the current

FEM mesh (nodes and elements)
 Includes all attributes
 Client can display, rotate, examine
 Not just for postmortem!

• Making movies on the fly
• Dumping simulation output
• Monitoring running simulation

 9

NetFEM: visualization tool
 Connect to running parallel machine
 See, e.g., wave dispersion off a crack

 10

Impostors : Basic Idea

Camera

Impostor

Geometry

 11

Parallel Impostors Technique
 Key observation: impostor images

don’t depend on one another
 So render impostors in parallel!

 Uses the speed and memory of the
parallel machine
• Fine grained-- lots of potential parallelism

 Geometry is partitioned by impostors
• No “shared model” assumption

 Reassemble world on serial client
 Uses rendering bandwidth of client

graphics card
 Impostor reuse cuts required network

bandwidth to client
• Only update images when necessary

 Impostors provide latency tolerance

 12

Client/Server Architecture

 Parallel machine can be anywhere on network
 Keeps the problem geometry
 Renders and ships new impostors as needed

 Impostors shipped using TCP/IP sockets
 CCS & PUP protocol [Jyothi and Lawlor 04]
 Works over NAT/firewalled networks

 Client sits on user’s desk
 Sends server new viewpoints
 Receives and displays new impostors

 13

Client Architecture
 Latency tolerance: client never waits for server

 Displays existing impostors at fixed framerate
 Even if they’re out of date

 Prefers spatial error (due to out of date impostor) to
temporal error (due to dropped frames)

 Implementation uses OpenGL for display
 Two separate kernel threads for network handling

New work:
liveViz pixel transport

 15

Basic model: LiveViz
 Serial 2D Client
 Parallel Charm++ Server
 Client connects
 Server sends client the current

2D image pixels (just pixels)
 Can be from a 3D viewpoint

(liveViz3D mode)
 Can be color (RGB) or grayscale
 Recently extended to support JPEG

compressed network transport
• Big win on slow networks!

LiveViz – What is it?
 Charm++ library
 Visualization tool
 Inspect your

program’s current
state

 Java client runs on
any machine

 You code the
image generation

 2D and 3D modes

LiveViz Request Model

 LiveViz Server Library

 Client GUI

LiveViz Application

•Client sends request
•Server code broadcasts request to application
•Application array element render image pieces
•Server code assembles full 2D image
•Server sends 2D image back to client
•Client displays image

LiveViz Request Model

 LiveViz Server Library

 Client GUI

LiveViz Application

•Client sends request
•Server code broadcasts request to application
•Application array element render image pieces
•Server code assembles full 2D image
•Server sends 2D image back to client
•Client displays image Bottleneck!

LiveViz Compressed requests

 LiveViz Server Library

 Client GUI

LiveViz Application

•Client sends request
•Server code broadcasts request to application
•Application array element render image pieces
•Server code assembles full 2D image
•Server compresses 2D image to a JPEG
•Server sends JPEG to client
•Client decompresses and displays image

LiveViz Compressed requests

•On a gigabit network, JPEG compression
is CPU-bound, and just slows us down!

•Compression hence optional

Window Size No Compression Compression
256x256 333 fps 25 fps
512x512 166 fps 24 fps
1024x1024 50 fps 15 fps
2048x2048 13 fps 4 fps

LiveViz Compressed requests

•On a slow 2MB/s wireless or WAN network,
uncompressed liveViz is network bound

•Here, JPEG data transport is a big win!

Window Size No Compression Compression
256x256 6 fps 22 fps
512x512 2 fps 15 fps
1024x1024 < 1 fps 13 fps
2048x2048 << 1 fps 4 fps

New work:
Cosmology Rendering

 23

 Large astrophysics simulation
(Quinn et al)
 >=50M particles
 >=20 bytes/particle
 => 1 GB of data

Large Particle Dataset

 24

 Rendering process (in principle)
 For each pixel:

• Find maximum mass along 3D ray
• Look up mass in color table

Large Particle Rendering

 25

 Rendering process (in practice)
 For each particle:

• Project 3D particle onto 2D screen
• Keep maximum mass at each pixel
• Ship image to client
• Apply color table to 2D image at client

Large Particle Rendering

 26

Large Particle Rendering (2D)

 27

 Rendering process (in practice)
 For each particle:

• Project 3D particle onto 2D screen
• Keep maximum mass at each pixel
• Ship image to client
• Apply color table to 2D image at client

Large Particle Rendering (2D)

 28

Particle Set to Volume Impostors

 29

Shipping Volume Impostors

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Slices of 3D Volume

Stack of 2D Slices

 30

Shipping Volume Impostors

0

1

2

3

4

5

6

7

Stack of 2D Slices

•Hey, that's just a 2D image!
•So we can use liveViz:

Render slices in parallel

Assemble slices across processors

(Optionally) JPEG compress image

Ship across network to (new) client

 31

Volume Impostors Technique
 2D impostors are flat, and can't rotate
 3D voxel dataset can be rendered

from any viewpoint on the client
 Practical problem:

 Render voxels into a 2D image on
the client by drawing slices with
OpenGL

 Store maximum across all slices:
glBlendEquation(GL_MAX);

 To look up (rendered) maximum in
color table, render slices to texture
and run a programmable shader

 32

Volume Impostors: GLSL Code
 GLSL code to look up the rendered color in

our color table texture:

varying vec2 texcoords;

uniform sampler2D rendered, color_table;

void main()

{

 vec4
rend=texture2D(rendered,texcoords
);

 gl_FragColor =
texture2D(color_table,

 vec2(rend.r+0.5/255,0));

}

 Frustration: color table values don't interpolate
(use GL_NEAREST, but it's pretty blocky!)

New Work:
MPIglut

MPIglut: Motivation
●All modern computing is parallel

 Multi-Core CPUs, Clusters
• Athlon 64 X2, Intel Core2 Duo

 Multiple Multi-Unit GPUs
• nVidia SLI, ATI CrossFire

 Multiple Displays, Disks, ...

●But languages and many existing
applications are sequential

 Software problem: run existing
serial code on a parallel machine

 Related: easily write parallel code

What is a “Powerwall”?
●A powerwall has:

Several physical display
devices

One large virtual screen
I.E. “parallel screens”

●UAF CS/Bioinformatics Powerwall
 Twenty LCD panels
 9000 x 4500 pixels combined

resolution
 35+ Megapixels

Sequential OpenGL Application

Parallel Powerwall Application

MPIglut: The basic idea
●Users compile their OpenGL/glut
application using MPIglut, and it
“just works” on the powerwall
●MPIglut's version of glutInit runs
a separate copy of the application
for each powerwall screen
●MPIglut intercepts glutInit,
glViewport, and broadcasts user
events over the network
●MPIglut's glViewport shifts to
render only the local screen

MPIglut uses glut sequential code
●GL Utilities Toolkit

 Portable window, event, and GUI
functionality for OpenGL apps

 De facto standard for small apps
 Several implementations: Mark

Kilgard original, FreeGLUT, ...
 Totally sequential library, until now!

●MPIglut intercepts several calls
 But many calls still unmodified
 We run on a patched freeglut 2.4

• Minor modification to window creation

Parallel Rendering Taxonomy
●Molnar's influential 1994 paper

 Sort-first: send geometry across
network before rasterization (GLX/
DMX, Chromium)

 Sort-middle: send scanlines across
network during rasterization

 Sort-last: send rendered pixels
across the network after rendering
(Charm++ liveViz, IBM's Scalable
Graphics Engine, ATI CrossFire)

Parallel Rendering Taxonomy
●Expanded taxonomy:

 Send-event (MPIglut, VR Juggler)
• Send only user events (mouse clicks,

keypresses). Just kilobytes/sec!
 Send-database

• Send application-level primitives, like
terrain model. Can cache/replicate data!

 Send-geometry (Molnar sort-first)
 Send-scanlines (Molnar sort-middle)
 Send-pixels (Molnar sort-last)

MPIglut Code & Runtime Changes

MPIglut Conversion: Original Code
#include <GL/glut.h>
void display(void) {

glBegin(GL_TRIANGLES); ... glEnd();
glutSwapBuffers();

}
void reshape(int x_size,int y_size) {

glViewport(0,0,x_size,y_size);
glLoadIdentity();
gluLookAt(...);

}
...
int main(int argc,char *argv[]) {

glutInit(&argc,argv);
glutCreateWindow(“Ello!”);
glutMouseFunc(...);
...

}

MPIglut: Required Code Changes
#include <GL/mpiglut.h>
void display(void) {

glBegin(GL_TRIANGLES); ... glEnd();
glutSwapBuffers();

}
void reshape(int x_size,int y_size) {

glViewport(0,0,x_size,y_size);
glLoadIdentity();
gluLookAt(...);

}
...
int main(int argc,char *argv[]) {

glutInit(&argc,argv);
glutCreateWindow(“Ello!”);
glutMouseFunc(...);
...

}

This is the only source change.
Or, you can just copy mpiglut.h
over your old glut.h header!

MPIglut Runtime Changes: Init
#include <GL/mpiglut.h>
void display(void) {

glBegin(GL_TRIANGLES); ... glEnd();
glutSwapBuffers();

}
void reshape(int x_size,int y_size) {

glViewport(0,0,x_size,y_size);
glLoadIdentity();
gluLookAt(...);

}
...
int main(int argc,char *argv[]) {

glutInit(&argc,argv);
glutCreateWindow(“Ello!”);
glutMouseFunc(...);
...

}

MPIglut starts a separate copy
of the program (a “backend”)
to drive each powerwall screen

MPIglut Runtime Changes: Events
#include <GL/mpiglut.h>
void display(void) {

glBegin(GL_TRIANGLES); ... glEnd();
glutSwapBuffers();

}
void reshape(int x_size,int y_size) {

glViewport(0,0,x_size,y_size);
glLoadIdentity();
gluLookAt(...);

}
...
int main(int argc,char *argv[]) {

glutInit(&argc,argv);
glutCreateWindow(“Ello!”);
glutMouseFunc(...);
...

}

Mouse and other user input
events are collected and sent
across the network.
Each backend gets identical user
events (collective delivery)

MPIglut Runtime Changes: Sync
#include <GL/mpiglut.h>
void display(void) {

glBegin(GL_TRIANGLES); ... glEnd();
glutSwapBuffers();

}
void reshape(int x_size,int y_size) {

glViewport(0,0,x_size,y_size);
glLoadIdentity();
gluLookAt(...);

}
...
int main(int argc,char *argv[]) {

glutInit(&argc,argv);
glutCreateWindow(“Ello!”);
glutMouseFunc(...);
...

}

Frame display is (optionally)
synchronized across the cluster

MPIglut Runtime Changes: Coords
#include <GL/mpiglut.h>
void display(void) {

glBegin(GL_TRIANGLES); ... glEnd();
glutSwapBuffers();

}
void reshape(int x_size,int y_size) {

glViewport(0,0,x_size,y_size);
glLoadIdentity();
gluLookAt(...);

}
...
int main(int argc,char *argv[]) {

glutInit(&argc,argv);
glutCreateWindow(“Ello!”);
glutMouseFunc(...);
...

}

User code works only in global
coordinates, but MPIglut adjusts
OpenGL's projection matrix
to render only the local screen

MPIglut Runtime Non-Changes
#include <GL/mpiglut.h>
void display(void) {

glBegin(GL_TRIANGLES); ... glEnd();
glutSwapBuffers();

}
void reshape(int x_size,int y_size) {

glViewport(0,0,x_size,y_size);
glLoadIdentity();
gluLookAt(...);

}
...
int main(int argc,char *argv[]) {

glutInit(&argc,argv);
glutCreateWindow(“Ello!”);
glutMouseFunc(...);
...

}

MPIglut does NOT intercept or
interfere with rendering calls,
so programmable shaders,
vertex buffer objects,
framebuffer objects, etc
all run at full performance

MPIglut Assumptions/Limitations
●Each backend app must be able
to render its part of its screen

 Does not automatically imply a
replicated database, if application
uses matrix-based view culling

●Backend GUI events (redraws,
window changes) are collective

 All backends must stay in synch
 Automatic for applications that are

deterministic function of events
• Non-synchronized: files, network, time

MPIglut: Bottom Line
●Tiny source code change
●Parallelism hidden inside MPIglut

 Application still “feels” sequential

●Fairly major runtime changes
 Serial code now runs in parallel (!)
 Multiple synchronized backends

running in parallel
 User input events go across network
 OpenGL rendering coordinate

system adjusted per-backend
 But rendering calls are left alone

MPIglut Application Performance

Performance Testing
●MPIglut programs perform about
the same on 20 screens as they do
on 1 screen
●We compared performance
against two other packages for
running unmodified OpenGL apps:

 DMX: OpenGL GLX protocol
interception and replication
(MPIglut gets screen sizes via DMX)

 Chromium: libgl OpenGL rendering
call interception and routing

Benchmark Applications

soar

UAF CS Bioinformatics Powerwall

Switched Gigabit Ethernet Interconnect

10 Dual-Core 2GB Linux Machines:

7 nVidia QuadroFX 3450

3 nVidia QuadroFX 1400

MPIglut Performance

Chromium Tilesort Performance

Chromium Tilesort Performance

Gigabit Ethernet
Network Saturated!

DMX Performance

MPIglut Conclusions
●MPIglut: an easy route to high-
performance parallel rendering
●Hiding parallelism inside a library
is a broadly-applicable technique

 THREADirectX? OpenMPQt?

●Still much work to do:
 Multicore / multi-GPU support
 Need better GPGPU support (tiles,

ghost edges, load balancing)
 Need load balancing (AMPIglut!)

Load Balancing a Powerwall

●Problem: Sky really easy

 Terrain
 really hard

●Solution: Move the rendering
for load balance, but you've
got to move the finished pixels
back for display!

Future Work: Load Balancing
●AMPIglut: principle of persistence
should still apply
●But need cheap way to ship back
finished pixels every frame
●Exploring GPU JPEG compression

 DCT + quantize: really easy
 Huffman/entropy: really hard
 Probably need a CPU/GPU split

• 10000+ MB/s inside GPU
• 1000+ MB/s on CPU
• 100+ MB/s on network

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

