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Importance of Computer Graphics
 “The purpose of computing is insight, 

not numbers!” R. Hamming

 Vision is a key tool for analyzing and 
understanding the world

 Your eyes are your brain’s highest 
bandwidth input device
 Vision: >300MB/s 

• 1600x1200 24-bit 60Hz
 Sound: <1 MB/s

• 44KHz 24-bit 5.1 Surround sound
 Touch: <1 KB/s (?)
 Smell/taste: <10 per second

 Plus, pictures look really cool...



Prior work:
GPUs, NetFEM, impostors
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GPU Rendering Drawbacks
 Graphics cards are fast

 But not at rendering lots of tiny 
geometry:
• 1M primitives/frame OK
• 1G pixels/frame OK
• 1G primitives/frame not OK

 Problems with billions of 
primitives do not utilize current 
graphics hardware well

 Graphics cards only have a few 
gigabytes of RAM (vs. parallel 
machine, with terabytes of RAM)
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Graphics Card: Usable Fill Rate
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Parallel Rendering Advantages
 Multiple processors can render 

geometry simultaneously

 Achieved rendering speedup for large 
particle dataset

 Can store huge datasets in memory
 BUT: No display on parallel machine!
 Ignores cost of shipping images to 

client

48 nodes of Hal cluster: 2-way 550MHz Pentium III nodes connected with fast ethernet
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Parallel Rendering Disadvantage

Parallel Machine Desktop Machine

Display

100 MB/s
Gigabit Ethernet

100 GB/s
Graphics Card 
   Memory

 Link to client is too slow!

Cannot ship 
frames to 
client at full 
framerate/ full 
resolution

WAY TOO SLOW!
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Basic model: NetFEM
 Serial OpenGL Client
 Parallel FEM Framework Server
 Client connects
 Server sends client the current 

FEM mesh (nodes and elements)
 Includes all attributes
 Client can display, rotate, examine
 Not just for postmortem!

• Making movies on the fly
• Dumping simulation output
• Monitoring running simulation
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NetFEM: visualization tool
 Connect to running parallel machine
 See, e.g., wave dispersion off a crack
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Impostors : Basic Idea

Camera

Impostor

Geometry
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Parallel Impostors Technique
 Key observation: impostor images 

don’t depend on one another
 So render impostors in parallel!

 Uses the speed and memory of the 
parallel machine
• Fine grained-- lots of potential parallelism

 Geometry is partitioned by impostors
• No “shared model” assumption

 Reassemble world on serial client
 Uses rendering bandwidth of client 

graphics card
 Impostor reuse cuts required network 

bandwidth to client
• Only update images when necessary

 Impostors provide latency tolerance
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Client/Server Architecture

 Parallel machine can be anywhere on network
 Keeps the problem geometry
 Renders and ships new impostors as needed

 Impostors shipped using TCP/IP sockets 
 CCS & PUP protocol [Jyothi and Lawlor 04]
 Works over NAT/firewalled networks

 Client sits on user’s desk
 Sends server new viewpoints
 Receives and displays new impostors
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Client Architecture
 Latency tolerance: client never waits for server

 Displays existing impostors at fixed framerate
 Even if they’re out of date

 Prefers spatial error (due to out of date impostor) to 
temporal error (due to dropped frames)

 Implementation uses OpenGL for display
 Two separate kernel threads for network handling



New work:
liveViz pixel transport
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Basic model: LiveViz
 Serial 2D Client
 Parallel Charm++ Server
 Client connects
 Server sends client the current 

2D image pixels (just pixels)
 Can be from a 3D viewpoint 

(liveViz3D mode)
 Can be color (RGB) or grayscale
 Recently extended to support JPEG 

compressed network transport
• Big win on slow networks!



LiveViz – What is it?
 Charm++ library
 Visualization tool
 Inspect your 

program’s current 
state

 Java client runs on 
any machine

 You code the 
image generation

 2D and 3D modes



LiveViz Request Model

            LiveViz Server Library

           Client GUI

LiveViz Application

•Client sends request
•Server code broadcasts request to application
•Application array element render image pieces
•Server code assembles full 2D image
•Server sends 2D image back to client
•Client displays image



LiveViz Request Model

            LiveViz Server Library

           Client GUI

LiveViz Application

•Client sends request
•Server code broadcasts request to application
•Application array element render image pieces
•Server code assembles full 2D image
•Server sends 2D image back to client
•Client displays image Bottleneck!



LiveViz Compressed requests

            LiveViz Server Library

           Client GUI

LiveViz Application

•Client sends request
•Server code broadcasts request to application
•Application array element render image pieces
•Server code assembles full 2D image
•Server compresses 2D image to a JPEG
•Server sends JPEG to client
•Client decompresses and displays image



LiveViz Compressed requests

•On a gigabit network, JPEG compression 
is CPU-bound, and just slows us down!

•Compression hence optional

Window Size No Compression Compression
256x256 333 fps 25 fps
512x512 166 fps 24 fps
1024x1024 50 fps 15 fps
2048x2048 13 fps 4 fps



LiveViz Compressed requests

•On a slow 2MB/s wireless or WAN network, 
uncompressed liveViz is network bound

•Here, JPEG data transport is a big win!

Window Size No Compression Compression
256x256 6 fps 22 fps
512x512 2 fps 15 fps
1024x1024 < 1 fps 13 fps
2048x2048 << 1 fps 4 fps



New work:
Cosmology Rendering
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 Large astrophysics simulation 
(Quinn et al)
 >=50M particles
 >=20 bytes/particle
 => 1 GB of data

Large Particle Dataset
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 Rendering process (in principle)
 For each pixel:

• Find maximum mass along 3D ray
• Look up mass in color table

Large Particle Rendering
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 Rendering process (in practice)
 For each particle:

• Project 3D particle onto 2D screen
• Keep maximum mass at each pixel
• Ship image to client
• Apply color table to 2D image at client

Large Particle Rendering
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Large Particle Rendering (2D)
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 Rendering process (in practice)
 For each particle:

• Project 3D particle onto 2D screen
• Keep maximum mass at each pixel
• Ship image to client
• Apply color table to 2D image at client

Large Particle Rendering (2D)
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Particle Set to Volume Impostors
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Shipping Volume Impostors
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Shipping Volume Impostors
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Stack of 2D Slices

•Hey, that's just a 2D image!
•So we can use liveViz:

Render slices in parallel

Assemble slices across processors

(Optionally) JPEG compress image

Ship across network to (new) client
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Volume Impostors Technique
 2D impostors are flat, and can't rotate
 3D voxel dataset can be rendered 

from any viewpoint on the client
 Practical problem:

 Render voxels into a 2D image on 
the client by drawing slices with 
OpenGL

 Store maximum across all slices: 
glBlendEquation(GL_MAX);

 To look up (rendered) maximum in 
color table, render slices to texture 
and run a programmable shader
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Volume Impostors: GLSL Code
 GLSL code to look up the rendered color in 

our color table texture:

varying vec2 texcoords; 

uniform sampler2D rendered, color_table;

void main()

{ 

   vec4 
rend=texture2D(rendered,texcoords
);

   gl_FragColor = 
texture2D(color_table, 

              vec2(rend.r+0.5/255,0));

}

 Frustration: color table values don't interpolate 
(use GL_NEAREST, but it's pretty blocky!)



New Work:
MPIglut



MPIglut: Motivation
●All modern computing is parallel

 Multi-Core CPUs, Clusters
• Athlon 64 X2, Intel Core2 Duo

 Multiple Multi-Unit GPUs 
• nVidia SLI, ATI CrossFire

 Multiple Displays, Disks, ...

●But languages and many existing 
applications are sequential

 Software problem: run existing 
serial code on a parallel machine

 Related: easily write parallel code



What is a “Powerwall”?
●A powerwall has:

Several physical display 
devices

One large virtual screen
I.E. “parallel screens”

●UAF CS/Bioinformatics Powerwall
 Twenty LCD panels
 9000 x 4500 pixels combined 

resolution
 35+ Megapixels



Sequential OpenGL Application



Parallel Powerwall Application



MPIglut: The basic idea
●Users compile their OpenGL/glut 
application using MPIglut, and it 
“just works” on the powerwall
●MPIglut's version of glutInit runs 
a separate copy of the application 
for each powerwall screen
●MPIglut intercepts glutInit, 
glViewport, and broadcasts user 
events over the network
●MPIglut's glViewport shifts to 
render only the local screen



MPIglut uses glut sequential code
●GL Utilities Toolkit

 Portable window, event, and GUI 
functionality for OpenGL apps

 De facto standard for small apps
 Several implementations: Mark 

Kilgard original, FreeGLUT, ...
 Totally sequential library, until now!

●MPIglut intercepts several calls
 But many calls still unmodified
 We run on a patched freeglut 2.4

• Minor modification to window creation



Parallel Rendering Taxonomy
●Molnar's influential 1994 paper

 Sort-first: send geometry across 
network before rasterization (GLX/
DMX, Chromium)

 Sort-middle: send scanlines across 
network during rasterization

 Sort-last: send rendered pixels 
across the network after rendering 
(Charm++ liveViz, IBM's Scalable 
Graphics Engine, ATI CrossFire)



Parallel Rendering Taxonomy
●Expanded taxonomy:

 Send-event (MPIglut, VR Juggler)
• Send only user events (mouse clicks, 

keypresses).  Just kilobytes/sec!
 Send-database

• Send application-level primitives, like 
terrain model.  Can cache/replicate data!

 Send-geometry (Molnar sort-first)
 Send-scanlines (Molnar sort-middle)
 Send-pixels (Molnar sort-last)



MPIglut Code & Runtime Changes



MPIglut Conversion: Original Code
#include <GL/glut.h>
void display(void) {

glBegin(GL_TRIANGLES); ... glEnd();
glutSwapBuffers();

}
void reshape(int x_size,int y_size) {

glViewport(0,0,x_size,y_size);
glLoadIdentity();
gluLookAt(...);

}
...
int main(int argc,char *argv[]) {

glutInit(&argc,argv);
glutCreateWindow(“Ello!”);
glutMouseFunc(...);
...

}



MPIglut: Required Code Changes
#include <GL/mpiglut.h>
void display(void) {

glBegin(GL_TRIANGLES); ... glEnd();
glutSwapBuffers();

}
void reshape(int x_size,int y_size) {

glViewport(0,0,x_size,y_size);
glLoadIdentity();
gluLookAt(...);

}
...
int main(int argc,char *argv[]) {

glutInit(&argc,argv);
glutCreateWindow(“Ello!”);
glutMouseFunc(...);
...

}

This is the only source change.
Or, you can just copy mpiglut.h 
over your old glut.h header!



MPIglut Runtime Changes: Init
#include <GL/mpiglut.h>
void display(void) {

glBegin(GL_TRIANGLES); ... glEnd();
glutSwapBuffers();

}
void reshape(int x_size,int y_size) {

glViewport(0,0,x_size,y_size);
glLoadIdentity();
gluLookAt(...);

}
...
int main(int argc,char *argv[]) {

glutInit(&argc,argv);
glutCreateWindow(“Ello!”);
glutMouseFunc(...);
...

}

MPIglut starts a separate copy 
of the program (a “backend”) 
to drive each powerwall screen



MPIglut Runtime Changes: Events
#include <GL/mpiglut.h>
void display(void) {

glBegin(GL_TRIANGLES); ... glEnd();
glutSwapBuffers();

}
void reshape(int x_size,int y_size) {

glViewport(0,0,x_size,y_size);
glLoadIdentity();
gluLookAt(...);

}
...
int main(int argc,char *argv[]) {

glutInit(&argc,argv);
glutCreateWindow(“Ello!”);
glutMouseFunc(...);
...

}

Mouse and other user input 
events are collected and sent 
across the network.  
Each backend gets identical user 
events (collective delivery)



MPIglut Runtime Changes: Sync
#include <GL/mpiglut.h>
void display(void) {

glBegin(GL_TRIANGLES); ... glEnd();
glutSwapBuffers();

}
void reshape(int x_size,int y_size) {

glViewport(0,0,x_size,y_size);
glLoadIdentity();
gluLookAt(...);

}
...
int main(int argc,char *argv[]) {

glutInit(&argc,argv);
glutCreateWindow(“Ello!”);
glutMouseFunc(...);
...

}

Frame display is (optionally) 
synchronized across the cluster



MPIglut Runtime Changes: Coords
#include <GL/mpiglut.h>
void display(void) {

glBegin(GL_TRIANGLES); ... glEnd();
glutSwapBuffers();

}
void reshape(int x_size,int y_size) {

glViewport(0,0,x_size,y_size);
glLoadIdentity();
gluLookAt(...);

}
...
int main(int argc,char *argv[]) {

glutInit(&argc,argv);
glutCreateWindow(“Ello!”);
glutMouseFunc(...);
...

}

User code works only in global 
coordinates, but MPIglut adjusts 
OpenGL's projection matrix 
to render only the local screen



MPIglut Runtime Non-Changes
#include <GL/mpiglut.h>
void display(void) {

glBegin(GL_TRIANGLES); ... glEnd();
glutSwapBuffers();

}
void reshape(int x_size,int y_size) {

glViewport(0,0,x_size,y_size);
glLoadIdentity();
gluLookAt(...);

}
...
int main(int argc,char *argv[]) {

glutInit(&argc,argv);
glutCreateWindow(“Ello!”);
glutMouseFunc(...);
...

}

MPIglut does NOT intercept or 
interfere with rendering calls, 
so programmable shaders, 
vertex buffer objects, 
framebuffer objects, etc 
all run at full performance



MPIglut Assumptions/Limitations
●Each backend app must be able 
to render its part of its screen

 Does not automatically imply a 
replicated database, if application 
uses matrix-based view culling 

●Backend GUI events (redraws, 
window changes) are collective

 All backends must stay in synch
 Automatic for applications that are 

deterministic function of events
• Non-synchronized: files, network, time



MPIglut: Bottom Line
●Tiny source code change
●Parallelism hidden inside MPIglut

 Application still “feels” sequential

●Fairly major runtime changes
 Serial code now runs in parallel (!)
 Multiple synchronized backends 

running in parallel
 User input events go across network
 OpenGL rendering coordinate 

system adjusted per-backend
 But rendering calls are left alone



MPIglut Application Performance



Performance Testing
●MPIglut programs perform about 
the same on 20 screens as they do 
on 1 screen
●We compared performance 
against two other packages for 
running unmodified OpenGL apps:

 DMX: OpenGL GLX protocol 
interception and replication 
(MPIglut gets screen sizes via DMX)

 Chromium: libgl OpenGL rendering 
call interception and routing



Benchmark Applications

soar

UAF CS Bioinformatics Powerwall

Switched Gigabit Ethernet Interconnect

10 Dual-Core 2GB Linux Machines:

7 nVidia QuadroFX 3450

3 nVidia QuadroFX 1400



MPIglut Performance



Chromium Tilesort Performance



Chromium Tilesort Performance

Gigabit Ethernet 
Network Saturated!



DMX Performance



MPIglut Conclusions
●MPIglut: an easy route to high-
performance parallel rendering
●Hiding parallelism inside a library 
is a broadly-applicable technique

 THREADirectX? OpenMPQt?

●Still much work to do:
 Multicore / multi-GPU support
 Need better GPGPU support (tiles, 

ghost edges, load balancing)
 Need load balancing (AMPIglut!)



Load Balancing a Powerwall

●Problem:      Sky really easy

             Terrain 
                 really hard

●Solution: Move the rendering 
for load balance, but you've 
got to move the finished pixels 
back for display!



Future Work: Load Balancing
●AMPIglut: principle of persistence 
should still apply 
●But need cheap way to ship back 
finished pixels every frame
●Exploring GPU JPEG compression

 DCT + quantize: really easy
 Huffman/entropy: really hard
 Probably need a CPU/GPU split

• 10000+ MB/s inside GPU
• 1000+ MB/s on CPU
• 100+ MB/s on network
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