
Performance Analysis with
the Projections Tool
By Chee Wai Lee

Tutorial Outline

  General Introduction

   Instrumentation

   Trace Generation

   Support for TAU profiles

   Performance Analysis

   Dealing with Scalability and Data Volume

General Introduction

   Introductions to Projections

   Basic Charm++ Model

The Projections Framework

   Projections is a performance framework designed for use
with the Charm++ runtime system.

   Supports the generation of detailed trace logs as well as
summary profiles.

   Supports a simple user-level API for user-directed
instrumentation and visualization.

   Java-based visualization tool.

   Analysis is post-mortem and human-centric with some
automation support.

What you will need

   A version of Charm++ built without the
CMK_OPTIMIZE flag (Developers using pre-built binaries please

consult your system administrators).

   Java 5 Runtime or higher.

   Projections Java Visualization binary:

   Distributed with the Charm++ source (tools/projections/

bin).

   Build with “make” or “ant” (tools/projections).

The Basic Charm++ Model

   Object-Oriented: Chare
objects encapsulate data and
entry methods.

   Message-Driven: An entry
method is scheduled for
execution on a processor
when an incoming message
is processed on a message
queue.

   Each processor executes an
entry method to completion
before scheduling the next
one (if any). Message Queue

Processor

Chare Object
New
Incoming
Message

Chare Object

entry method
bar()

entry method
foo()

entry method
qsort()

Scheduler:
schedules
appropriate
method for next
message on Q

Tutorial Outline

   General Introduction

   Instrumentation

   Trace Generation

   Support for TAU profiles

   Performance Analysis

   Dealing with Scalability and Data Volume

Instrumentation

   Basics

   Application Programmer’s Interface (API)

   User-Specific Events

   Turning Tracing On/Off

Instrumentation: Basics

   Nothing to do!

   Charm++’s built-in performance framework automatically
instruments entry method execution and communication
events whenever a performance module is linked with the
application (see later).

   In the majority of cases, this generates very useful data for
analysis while introducing minimal overhead/perturbation.

   The framework also provides the necessary abstraction for
better interpretation of performance metrics for third-party
performance modules like TAU profiling (see later).

Instrumentation: User-Events

   If user-specific events (e.g. specific code-blocks) are required,
these can be manually inserted into the application code:

Register:

int traceRegisterUserEvent(char* EventDesc, int EventNum=-1)�

Record a Point-Event:

void traceUserEvent(int EventNum)�

Record a Bracketed-Event:

void traceUserBracketEvent(int EventNum, double StartTime, double
EndTime)�

Instrumentation:
 Selective Tracing

   Allows analyst to restrict the time period for which
performance data is generated.

   Simple Interface, but not so easy to use:

void traceBegin()�

void traceEnd()�

   Calls have a per-processor effect, so users have to
ensure consistency (calls are made from within objects
and there can be more than one object per processor).

Selective Tracing Example
// do this once on each PE, remember we are now in an array element. �

// the (currently valid) assumption is that each PE has at least 1 object. �

 if (!CkpvAccess(traceFlagSet)) {�

 if (iteration == 0) {�

 traceBegin();�

 CkpvAccess(traceFlagSet) = true;�

 }�

 }�

Tutorial Outline

   General Introduction

   Instrumentation

  Trace Generation

   Support for TAU profiles

   Performance Analysis

   Dealing with Scalability and Data Volume

Trace Generation

   Performance Modules at Application Build Time

   Projections Event Tracing, Projections Summary Profiles

   TAU Profiles

   Application Runtime Controls

   The Projections Event Tracing Module.

   The Projections Summary Profile Module.

   The TAU Profile Module.

Application Build Options

   Link into Application one or more Performance
Modules:

   “-tracemode summary” for Projections Profiles.

   “-tracemode projections” for Projections Event Traces.

   “-tracemode Tau” for TAU Profiles (see later for details).

Application Runtime Options

   General Options:

   +traceoff tells the Performance Framework not to record

events until it encounters a traceBegin() API call.

   +traceroot <dir> tells the Performance Framework which
folder to write output to.

   +gz-trace tells the Performance Framework to output
compressed data (default is text). This is useful on extremely
large machine configurations where the attempt to write the logs for
large number of processors would overwhelm the IO subsystem.

The Projections Event Tracing
Module

   Records pertinent detailed metrics per Charm++ event.

   e.g. Start of an entry method invocation – details:

   source of the message

   size of the incoming message

   time of invocation

   chare object id

   One text line per event is written to the log file.

   One log file is maintained per processor.

The Projections Summary
Profile Module

50% 100% 100% 100% 50%

0 t 2t 3t 4t 5t 6t 7t 8t

75% 100% 75%

0 2t 4t 6t 8t 10t 12t 14t 16t

Entry Method Execution

When Application
encounters an event after 8t

TAU Profiles

   Like Projections’ Summary module, TAU profiles are
direct-measurement profiles rather than statistical
profiles.

   In the default case, for each entry method (and the
main function), the following data is recorded:

   Total Inclusive Time

   Total Exclusive Time

   Number of Invocations

Tutorial Outline

   General Introduction

   Instrumentation

   Trace Generation

  Support for TAU profiles

   Performance Analysis

   Dealing with Scalability and Data Volume

Getting TAU Profiles

   Requirements:

   Get and install the TAU package from:

 http://www.cs.uoregon.edu/research/tau/downloads.php

   Building TAU support into Charm++:

   ./build Tau <charm_build> –tau-makefile=<tau_install_dir>/

<arch>/lib/<name of tau makefile>�

   e.g. “./build Tau mpi-crayxt –tau-makefile=/home/me/tau/
craycnl/lib/Makefile.tau-mpi”

Tutorial Outline

   General Introduction

   Instrumentation

   Trace Generation

   Support for TAU profiles

  Performance Analysis

   Dealing with Scalability and Data Volume

Performance Analysis

   Live demo with the simple object-imbalance code as an
example.

   We will see:

   Building the code with tracemodes “projections”,

“summary” and “Tau”.

   Executing the code and generating logs on a local 8-core

machine with some control options.

   Visualizing the resulting performance data with

Projections and paraprof (for TAU data).

   Repeating the above process with different experiments.

The Load Imbalance Example

Obj 3

Obj 2

Obj 1

Obj 0

Obj 7

Obj 6

Obj 4

Obj 5

PE 0 PE 1

•  4 objects assigned to each
processor.
•  Objects on even processors
get 2 units of work.
•  Objects on odd processors
get 1 unit of work.
•  Each object computes its
assigned work each iteration.
•  Each iteration is followed
by a barrier.

The Load Imbalance Example
(2)

PE 0

PE 1

Barrier

Iteration 0 Iteration 1

Barrier

Passage of Time

Rebalancing the Load

PE 0

PE 1

Load Balancing
(eg. Greedy strategy)

Iteration 0
took 8 units of time

Iteration 1
now takes 6 units of time

Barrier

Passage of Time

Using Projections on
The Load Imbalance Example

   Executed on 8 processors (single 8-core chip).

   Charm++ program run over 10 iterations with Load
Balancing attempted at iteration 5.

   Experiments:

   Experiment 1: No Load Balancing attempted

(DummyLB).

   Experiment 2: Greedy Load Balancing attempted.

   Experiment 3: Make only object 0 do an insane amount
of work and repeat 1 & 2.

Tutorial Outline

   General Introduction

   Instrumentation

   Trace Generation

   Support for TAU profiles

   Performance Analysis

  Dealing with Scalability and Data
Volume

Scalability and Data Volume
Control

   Pre-release or beta features.

   How do we handle event trace logs from thousands of
processors?

   What options do we have for limiting the volume of
data generated?

   How do we avoid getting lost trying to find
performance problems when looking at visual displays
from extremely large log sets?

Limiting Data Volume

   Careful use of traceBegin()/traceEnd() calls to limit
instrumentation to a representative portion of a run.

   Eg. In NAMD benchmarks, we often look at 100 steps
after the first major load balancing phase, followed by a
refinement load balancing phase, followed by another
100 steps.

Limiting Data Volume (2)

   Pre-release feature – writing only a subset of processors’

performance data to disk.

   Uses clustering to identify equivalence classes of processor
behavior. This is done after the application is done, but before
performance data is written to disk.

   Select “exemplar” processors from each equivalence class. Select
“outlier” processors from each equivalence class. These processors
will represent the run.

   Write the performance data of representative processors to disk.

   Projections is able to handle the partial datasets when visualizing
the information.

Visualizing Large Datasets

Projections
Outlier
Analysis Tool:

Sorted by
“deviancy”

Usage Profile:
Only
64 processors.
What about
thousands?

Automatic Analysis Support

   Outlier Analysis (previous slide)

   Noise Miner

