


Intro

• This talk will focus on Cell processor
– Cell Broadband Engine Architecture (CBEA)

• Power Processing Element (PPE)
• Synergistic Processing Element (SPE)

– Current implementations
• Sony Playstation 3 (1 chip with 6 SPEs)
• IBM Blades (2 chips with 8 SPEs each)
• Toshiba SpursEngine (1 chip with 4 SPES)

• Future work will try to include GPUs & 
Larrabee



Two Topics in One
• Accelerators  (Accel)

…this is going to hurt…

• Heterogeneous systems  (Hetero)
…kill me now…

• Goal of work… take away the pain and make 
code portable

• Code examples



Why Use Accelerators?

• Performance



Why Not Use Accelerators?

• Hard to program
– Many architecturally specific details

• Different ISAs between core types
• Explicit DMA transactions to transfer data to/from 

the SPEs’ local stores
• Scheduling of work and communication

– Code is not trivially portable
• Structure of code on an accelerator often does not 

match that of a commodity architecture
• Simple re-compile not sufficient



Extensions Charm++

• Added extensions
– Accelerated entry methods
– Accelerated blocks
– SIMD instruction abstraction

• Extensions should be portable between 
architectures



Accelerated Entry Methods
• Executed on accelerator if present
• Targets computationally intensive code
• Structure based on standard entry methods

– Data dependencies expressed via messages
– Code is self-contained

• Managed by the runtime system
– DMAs automatically overlapped with work on the 

SPEs
– Scheduled (based on data dependencies: messages, 

objects)
– Multiple independently written portions of code share 

the same SPE (link to multiple accelerated libraries)



Accel Entry Method Structure

entry [accel] void entryName
( …passed parameters… )
[ …local parameters… ]
{ … function body … }
callback_member_funcion;

objProxy.entryName( … passed parameters …)



Accelerated Blocks

• Additional code that is accessible to 
accelerated entry methods
– #include directives
– Functions called by accelerated entry 

methods



SIMD Abstraction

• Abstract SIMD instructions supported by 
multiple architectures
– Currently adding support for: SSE (x86), 

AltiVec (PowerPC; PPE), SIMD instructions 
on SPEs

– Generic C implementation when no direct 
architectural support is present

– Types: vec4f, vec2lf, vec4i, etc.
– Operations: vadd4f, vmul4f, vsqrt4f, etc.



“HelloWorld” Code
hello.ci
-----------------------------------
mainmodule

 

hello {
…
accelblock

 

{
void sayMessage(char* msg,

int

 

thisIndex,
int

 

fromIndex) {
printf("%d

 

told %d to say ₩"%s₩"₩n",
fromIndex, thisIndex, msg);

}
};

array [1D] Hello {
entry Hello(void);
entry [accel] void saySomething(

int

 

msgLen,
char msg[msgLen],
int

 

fromIndex

 

)[
readonly

 

: int

 

thisIndex

 

<impl_obj->thisIndex>
] {
sayMessage(msg, thisIndex, fromIndex);

} saySomething_callback;
};

};

Hello.C

-----------------------------------

class Main : public CBase_Main

 

{

Main(CkArgMsg* m) {

CkPrintf("Running

 

Hello on %d processors for %d elements₩n",

CkNumPes(), nElements);

char *msg

 

= "Hello from Main";

arr[0].saySomething(strlen(msg) + 1, msg, -1);

};

void done(void) { CkPrintf("All

 

done₩n"); CkExit(); };

};

class Hello : public CBase_Hello

 

{

void saySomething_callback() {

if (thisIndex

 

< nElements

 

-

 

1) {

char msgBuf[128];

int

 

msgLen

 

= sprintf(msgBuf, "Hello from %d", thisIndex) + 1;

thisProxy[thisIndex+1].saySomething(msgLen, msgBuf,

thisIndex);

} else {

mainProxy.done();

}

}

};



“HelloWorld” Output
X86
-----------------------------------
Running Hello on 1 processors for 5 elements
-1 told 0 to say "Hello from Main"
0 told 1 to say "Hello from 0"
1 told 2 to say "Hello from 1"
2 told 3 to say "Hello from 2"
3 told 4 to say "Hello from 3"
All done

Blade
-----------------------------------
SPE reported _end = 0x00006930
SPE reported _end = 0x00006930
SPE reported _end = 0x00006930
SPE reported _end = 0x00006930
SPE reported _end = 0x00006930
SPE reported _end = 0x00006930
SPE reported _end = 0x00006930
SPE reported _end = 0x00006930
Running Hello on 1 processors for 5 elements
-1 told 0 to say "Hello from Main"
0 told 1 to say "Hello from 0"
1 told 2 to say "Hello from 1"
2 told 3 to say "Hello from 2"
3 told 4 to say "Hello from 3"
All done



MD Example Code

• List of particles evenly divided into equal sized 
patches
– Compute objects calculate forces

• Coulomb’s Law
• Single precision floating-point

– Patches sum forces and update particle data
– All particles interact with all other particles each 

timestep
• ~92K particles (similar to ApoA1 benchmark)
• Uses SIMD abstraction for all versions



MD Example Code

• Speedups (vs. 1 x86 core using SSE)
– 6 x86 cores: 5.89
– 1 QS20 chip (8 SPEs): 5.74

• GFlops/sec for 1 QS20 chip
– 50.1 GFlops/sec observed (24.4% peak)
– Nature of code (single inner-loop iteration)

• Inner-loop: 124 Flops using 54 instructions in 56 cycles
• Sequential code executing continuously can achieve, at 

most, 56.7 GFlops/sec (27.7% peak)
• We observe 88.4% of the ideal GFlops/sec for this code

– 178.2 GFlops/sec using 4 QS20s (net-linux layer)



Projections



Why Heterogeneous?

• Trend towards specialized accelerator 
cores mixed with general cores
– #1 supercomputer on Top500 list, Roadrunner 

at LANL (Cell & x86)
– Lincoln Cluster at NCSA (x86 & GPUs)

• Aging workstations that are loosely 
clustered



Hetero System View



Messages Across Architectures
• Makes use of Pack- 

UnPack (PUP) routines
– Object migration and 

parameter marshaled entry 
method are the same as 
before

– Custom pack/unpack 
routines for messages can 
use PUP framework

• Supported machine-layers:
– net-linux
– net-linux-cell



Making Hetero Runs

• Launch using charmrun
– Compile separate binary for each architecture
– Modified nodelist files to specify correct binary 

based on architecture



Hetero “Hello World” Example
Nodelist
------------------------------
group main ++shell "ssh -X"
host   kaleblade ++pathfix __arch_dir__         net-linux
host      blade_1  ++pathfix __arch_dir__  net-linux-cell
host         ps3_1  ++pathfix __arch_dir__  net-linux-cell

Accelblock change in hello.ci (just for demonstration)
------------------------------
accelblock {

void sayMessage(char* msg,
int thisIndex,
int fromIndex) {

#if CMK_CELL_SPE != 0
char *coreType = "SPE";

#elif CMK_CELL != 0
char *coreType = "PPE";

#else
char *coreType = "GEN";

#endif
printf("[%s] :: %d told %d to say \"%s\"\n",

coreType, fromIndex, thisIndex, msg);
}

};

Launch Command:
------------------------------
./charmrun ++nodelist ./nodelist_hetero +p3

~/charm/__arch_dir__/examples/charm++/cell/hello/hello 10

Output
------------------------------
Running Hello on 3 processors for 10 elements
[GEN] :: -1 told 0 to say "Hello from Main"
[SPE] :: 0 told 1 to say "Hello from 0"
[SPE] :: 1 told 2 to say "Hello from 1"
[GEN] :: 2 told 3 to say "Hello from 2"
[SPE] :: 3 told 4 to say "Hello from 3"
[SPE] :: 4 told 5 to say "Hello from 4"
[GEN] :: 5 told 6 to say "Hello from 5"
[SPE] :: 6 told 7 to say "Hello from 6"
[SPE] :: 7 told 8 to say "Hello from 7"
[GEN] :: 8 told 9 to say "Hello from 8"
All done



Summary

• Development still in progress (both)
• Addition of accelerator extensions

– Example codes in Charm++ distribution (the 
nightly build)

– Achieve good performance
• Heterogeneous system support

– Simple example codes running
– Not in public Charm++ distribution yet
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