

Intro

• This talk will focus on Cell processor
– Cell Broadband Engine Architecture (CBEA)

• Power Processing Element (PPE)
• Synergistic Processing Element (SPE)

– Current implementations
• Sony Playstation 3 (1 chip with 6 SPEs)
• IBM Blades (2 chips with 8 SPEs each)
• Toshiba SpursEngine (1 chip with 4 SPES)

• Future work will try to include GPUs &
Larrabee

Two Topics in One
• Accelerators (Accel)

…this is going to hurt…

• Heterogeneous systems (Hetero)
…kill me now…

• Goal of work… take away the pain and make
code portable

• Code examples

Why Use Accelerators?

• Performance

Why Not Use Accelerators?

• Hard to program
– Many architecturally specific details

• Different ISAs between core types
• Explicit DMA transactions to transfer data to/from

the SPEs’ local stores
• Scheduling of work and communication

– Code is not trivially portable
• Structure of code on an accelerator often does not

match that of a commodity architecture
• Simple re-compile not sufficient

Extensions Charm++

• Added extensions
– Accelerated entry methods
– Accelerated blocks
– SIMD instruction abstraction

• Extensions should be portable between
architectures

Accelerated Entry Methods
• Executed on accelerator if present
• Targets computationally intensive code
• Structure based on standard entry methods

– Data dependencies expressed via messages
– Code is self-contained

• Managed by the runtime system
– DMAs automatically overlapped with work on the

SPEs
– Scheduled (based on data dependencies: messages,

objects)
– Multiple independently written portions of code share

the same SPE (link to multiple accelerated libraries)

Accel Entry Method Structure

entry [accel] void entryName
(…passed parameters…)
[…local parameters…]
{ … function body … }
callback_member_funcion;

objProxy.entryName(… passed parameters …)

Accelerated Blocks

• Additional code that is accessible to
accelerated entry methods
– #include directives
– Functions called by accelerated entry

methods

SIMD Abstraction

• Abstract SIMD instructions supported by
multiple architectures
– Currently adding support for: SSE (x86),

AltiVec (PowerPC; PPE), SIMD instructions
on SPEs

– Generic C implementation when no direct
architectural support is present

– Types: vec4f, vec2lf, vec4i, etc.
– Operations: vadd4f, vmul4f, vsqrt4f, etc.

“HelloWorld” Code
hello.ci

mainmodule

hello {
…
accelblock

{
void sayMessage(char* msg,

int

thisIndex,
int

fromIndex) {
printf("%d

told %d to say ₩"%s₩"₩n",
fromIndex, thisIndex, msg);

}
};

array [1D] Hello {
entry Hello(void);
entry [accel] void saySomething(

int

msgLen,
char msg[msgLen],
int

fromIndex

)[
readonly

: int

thisIndex

<impl_obj->thisIndex>
] {
sayMessage(msg, thisIndex, fromIndex);

} saySomething_callback;
};

};

Hello.C

class Main : public CBase_Main

{

Main(CkArgMsg* m) {

CkPrintf("Running

Hello on %d processors for %d elements₩n",

CkNumPes(), nElements);

char *msg

= "Hello from Main";

arr[0].saySomething(strlen(msg) + 1, msg, -1);

};

void done(void) { CkPrintf("All

done₩n"); CkExit(); };

};

class Hello : public CBase_Hello

{

void saySomething_callback() {

if (thisIndex

< nElements

-

1) {

char msgBuf[128];

int

msgLen

= sprintf(msgBuf, "Hello from %d", thisIndex) + 1;

thisProxy[thisIndex+1].saySomething(msgLen, msgBuf,

thisIndex);

} else {

mainProxy.done();

}

}

};

“HelloWorld” Output
X86

Running Hello on 1 processors for 5 elements
-1 told 0 to say "Hello from Main"
0 told 1 to say "Hello from 0"
1 told 2 to say "Hello from 1"
2 told 3 to say "Hello from 2"
3 told 4 to say "Hello from 3"
All done

Blade

SPE reported _end = 0x00006930
SPE reported _end = 0x00006930
SPE reported _end = 0x00006930
SPE reported _end = 0x00006930
SPE reported _end = 0x00006930
SPE reported _end = 0x00006930
SPE reported _end = 0x00006930
SPE reported _end = 0x00006930
Running Hello on 1 processors for 5 elements
-1 told 0 to say "Hello from Main"
0 told 1 to say "Hello from 0"
1 told 2 to say "Hello from 1"
2 told 3 to say "Hello from 2"
3 told 4 to say "Hello from 3"
All done

MD Example Code

• List of particles evenly divided into equal sized
patches
– Compute objects calculate forces

• Coulomb’s Law
• Single precision floating-point

– Patches sum forces and update particle data
– All particles interact with all other particles each

timestep
• ~92K particles (similar to ApoA1 benchmark)
• Uses SIMD abstraction for all versions

MD Example Code

• Speedups (vs. 1 x86 core using SSE)
– 6 x86 cores: 5.89
– 1 QS20 chip (8 SPEs): 5.74

• GFlops/sec for 1 QS20 chip
– 50.1 GFlops/sec observed (24.4% peak)
– Nature of code (single inner-loop iteration)

• Inner-loop: 124 Flops using 54 instructions in 56 cycles
• Sequential code executing continuously can achieve, at

most, 56.7 GFlops/sec (27.7% peak)
• We observe 88.4% of the ideal GFlops/sec for this code

– 178.2 GFlops/sec using 4 QS20s (net-linux layer)

Projections

Why Heterogeneous?

• Trend towards specialized accelerator
cores mixed with general cores
– #1 supercomputer on Top500 list, Roadrunner

at LANL (Cell & x86)
– Lincoln Cluster at NCSA (x86 & GPUs)

• Aging workstations that are loosely
clustered

Hetero System View

Messages Across Architectures
• Makes use of Pack-

UnPack (PUP) routines
– Object migration and

parameter marshaled entry
method are the same as
before

– Custom pack/unpack
routines for messages can
use PUP framework

• Supported machine-layers:
– net-linux
– net-linux-cell

Making Hetero Runs

• Launch using charmrun
– Compile separate binary for each architecture
– Modified nodelist files to specify correct binary

based on architecture

Hetero “Hello World” Example
Nodelist

group main ++shell "ssh -X"
host kaleblade ++pathfix __arch_dir__ net-linux
host blade_1 ++pathfix __arch_dir__ net-linux-cell
host ps3_1 ++pathfix __arch_dir__ net-linux-cell

Accelblock change in hello.ci (just for demonstration)

accelblock {

void sayMessage(char* msg,
int thisIndex,
int fromIndex) {

#if CMK_CELL_SPE != 0
char *coreType = "SPE";

#elif CMK_CELL != 0
char *coreType = "PPE";

#else
char *coreType = "GEN";

#endif
printf("[%s] :: %d told %d to say \"%s\"\n",

coreType, fromIndex, thisIndex, msg);
}

};

Launch Command:

./charmrun ++nodelist ./nodelist_hetero +p3

~/charm/__arch_dir__/examples/charm++/cell/hello/hello 10

Output

Running Hello on 3 processors for 10 elements
[GEN] :: -1 told 0 to say "Hello from Main"
[SPE] :: 0 told 1 to say "Hello from 0"
[SPE] :: 1 told 2 to say "Hello from 1"
[GEN] :: 2 told 3 to say "Hello from 2"
[SPE] :: 3 told 4 to say "Hello from 3"
[SPE] :: 4 told 5 to say "Hello from 4"
[GEN] :: 5 told 6 to say "Hello from 5"
[SPE] :: 6 told 7 to say "Hello from 6"
[SPE] :: 7 told 8 to say "Hello from 7"
[GEN] :: 8 told 9 to say "Hello from 8"
All done

Summary

• Development still in progress (both)
• Addition of accelerator extensions

– Example codes in Charm++ distribution (the
nightly build)

– Achieve good performance
• Heterogeneous system support

– Simple example codes running
– Not in public Charm++ distribution yet

Credits

• Work partially supported by NIH grant
PHS 5 P41 RR05969-04: Biophysics /
Molecular Dynamics

• Cell hardware supplied by IBM SUR grant
awarded to University of Illinois

• Background Playstation controller image
originally taken by “wlodi” on Flickr and
modified by David Kunzman

	Slide Number 1
	Intro
	Two Topics in One
	Why Use Accelerators?
	Why Not Use Accelerators?
	Extensions Charm++
	Accelerated Entry Methods
	Accel Entry Method Structure
	Accelerated Blocks
	SIMD Abstraction
	“HelloWorld” Code
	“HelloWorld” Output
	MD Example Code
	MD Example Code
	Projections
	Why Heterogeneous?
	Hetero System View
	Messages Across Architectures
	Making Hetero Runs
	Hetero “Hello World” Example
	Summary
	Slide Number 22
	Credits

