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My Goal in Life

Performance with elegance



Introduction
Overview of our high-
performance, industrial 
strength, graph library

Comprehensive features
Impressive results
Separation of concerns

Lessons on software use 
and reuse
Thoughts on advancing 
high-performance 
(parallel) software



Advancing HPC Software
Why is writing high performance software so 
hard?
Because writing software is hard!
High performance software is software
All the old lessons apply
No silver bullets

Not a language
Not a library
Not a paradigm

Things do get better
but slowly



Advancing HPC Software

Progress, far from 
consisting in change, 

depends on

Progress, far from 
consisting in change, 

depends on 
retentiveness.

Progress, far from 
consisting in change, 

depends on 
retentiveness. Those 

who cannot remember 
the past are condemned 

to repeat it.



Advancing HPC Software
Name the two most important pieces of HPC 
software over last 20 years

BLAS
MPI

Why are these so important?
Why did they succeed?



Evolution of a Discipline

Craft

Production

Commercialization

Science

Professional Engineering

Cf. Shaw, Prospects for an engineering
discipline of software, 1990.

Virtuosos, talented amateurs
Extravagant use of materials
Design by intuition, brute force
Knowledge transmitted slowly, casually
Manufacture for use rather than sale

Skilled craftsmen
Established procedure
Training in mechanics
Concern for cost
Manufacture for sale

Educated professionals
Analysis and theory
Progress relies on science
Analysis enables new apps
Market segmented by 

product variety



Evolution of Software Practice



Why MPI Worked

Distributed
Memory Hardware

NX
Shmem
P4, PVM
Sockets

Message 
Passing
Rules!

MPI

“Legacy MPI codes”

MPICH
LAM/MPI

Open MPI
…



Today

Ubiquitous
Multicore

Pthtreads
Cilk
TBB
Charm++
…

Tasks, 
not threads

???

???

???



Tomorrow

Hybrid
Dream/Nightmare

Vision/Hallucination

MPI + X
Charm++
UPC
???

???

???

???

???



What Doesn’t Work
Codification

Models, Theories

Languages
Improved Practice



Performance with Elegance
Construct high-performance (and elegant!) 
software that can evolve in robust fashion
Must be an explicit goal



The Parallel Boost Graph Library
Goal: To build a generic library of efficient, 
scalable, distributed-memory parallel graph 
algorithms.

Approach: Apply advanced software paradigm 
(Generic Programming) to categorize and describe 
the domain of parallel graph algorithms. Separate 
concerns. Reuse sequential BGL software base.

Result: Parallel BGL.  Saved years of effort.



Graph Computations
Irregular and unbalanced
Non-local
Data driven
High data to computation ratio

Intuition from solving PDEs may not apply



Generic Programming
A methodology for the construction of 
reusable, efficient software libraries.

Dual focus on abstraction and efficiency.
Used in the C++ Standard Template Library

Platonic Idealism applied to 
software

Algorithms are naturally abstract, 
generic (the “higher truth”) 
Concrete implementations are just 
reflections (“concrete forms”)



Generic Programming Methodology
Study the concrete implementations of an 
algorithm
Lift away unnecessary requirements to produce 
a more abstract algorithm

Catalog these requirements.
Bundle requirements into concepts.

Repeat the lifting process until we have 
obtained a generic algorithm that:

Instantiates to efficient concrete implementations.
Captures the essence of the “higher truth” of that 
algorithm.



Lifting Summation

int sum(int* array, int n) {
int s = 0;
for (int i = 0; i < n; ++i)

s = s + array[i];
return s;

}



float sum(float* array, int n) {
float s = 0;
for (int i = 0; i < n; ++i)

s = s + array[i];
return s;

}

Lifting Summation



Lifting Summation
template<typename T>
T sum(T* array, int n) {
T s = 0;
for (int i = 0; i < n; ++i)

s = s + array[i];
return s;

}



Lifting Summation

double sum(list_node* first, list_node* last) {
double s = 0;
while (first != last) {

s = s + first->data;     first = first->next; }
return s;

}



Lifting Summation
template <InputIterator Iter>
value_type sum(Iter first, Iter last) {

value_type s = 0;
while (first != last)

s = s + *first++;
return s;

}



Lifting Summation

float product(list_node* first, list_node* last) {
float s = 1;
while (first != last) {

s = s * first->data;     first = first->next; }
return s;

}



Generic Accumulate
template <InputIterator Iter, typename T,

typename Op>
T accumulate(Iter first, Iter last, T s, Op op) {

while (first != last)
s = op(s, *first++);

return s;
}
Generic form captures all accumulation:

Any kind of data (int, float, string)
Any kind of sequence (array, list, file, network)
Any operation (add, multiply, concatenate)

Interface defined by concepts
Instantiates to efficient, concrete implementations 



Specialization
Synthesizes efficient code for a particular use of a 
generic algorithm:
int array[20];
accumulate(array, array + 20, 0,

std::plus<int>());

… generates the same code as our initial sum function 
for integer arrays.

Specialization works by breaking down 
abstractions

Typically, replace type parameters with concrete types.
Lifting can only use abstractions that compiler 
optimizers can eliminate.



Lifting and Specialization
Specialization is dual to lifting



The Boost Graph Library (BGL)
A graph library developed with the generic 
programming paradigm

Lift requirements on:
Specific graph structure
Edge and vertex types
Edge and vertex properties
Associating properties with vertices and edges
Algorithm-specific data structures (queues, etc.)



The Boost Graph Library (BGL)
Comprehensive and mature

~10 years of research and development
Many users, contributors outside of the OSL
Steadily evolving

Written in C++
Generic
Highly customizable
Highly efficient 

Storage and execution



BGL: Algorithms (partial list)
Searches (breadth-first, 
depth-first, A*)
Single-source shortest 
paths (Dijkstra, Bellman-
Ford, DAG)
All-pairs shortest paths 
(Johnson, Floyd-Warshall)
Minimum spanning tree 
(Kruskal, Prim)
Components (connected, 
strongly connected, 
biconnected)
Maximum cardinality 
matching

Max-flow (Edmonds-
Karp, push-relabel)
Sparse matrix ordering 
(Cuthill-McKee, King, 
Sloan, minimum degree)
Layout (Kamada-Kawai, 
Fruchterman-Reingold, 
Gursoy-Atun)
Betweenness centrality
PageRank
Isomorphism
Vertex coloring
Transitive closure
Dominator tree



BGL: Graph Data Structures
Graphs:

adjacency_list: highly configurable with 
user-specified containers for vertices and edges
adjacency_matrix
compressed_sparse_row

Adaptors:
subgraphs, filtered graphs, reverse graphs
LEDA and Stanford GraphBase

Or, use your own…



BGL Architecture



Parallelizing the BGL
Starting with the sequential BGL…

Three ways to build new algorithms or data 
structures

1. Lift away restrictions that make the component 
sequential (unifying parallel and sequential)

2. Wrap the sequential component in a 
distribution-aware manner.

3. Implement any entirely new, parallel 
component.



Lifting for Parallelism
Remove assumptions made by most 
sequential algorithms:

A single, shared address space.
A single “thread” of execution.

Platonic ideal: unify parallel and sequential 
algorithms

Our goal: Build the Parallel BGL by lifting the 
sequential BGL.



Breadth-First Search



Parallellizing BFS?



Parallellizing BFS?



Distributed Graph
One fundamental operation:

Enumerate out-edges of a 
given vertex

Distributed adjacency list:
Distribute vertices
Out-edges stored with the 
vertices



Parallellizing BFS?



Parallellizing BFS?



Distributed Queue
Three fundamental operations:

top/pop retrieves from queue
push operation adds to queue
empty operation signals 
termination

Distributed queue:
Separate, local queues
top/pop from local queue
push sends to a remote queue
empty waits for remote sends



Parallellizing BFS?



Parallellizing BFS?



Distributed Property Maps
Two fundamental operations:

put sets the value for a 
vertex/edge
get retrieves the value

Distributed property map:
Store data on same processor 
as vertex or edge
put/get send messages
Ghost cells cache remote 
values
Resolver combines puts



Generic interface from the Boost Graph Library
template<class IncidenceGraph, class Queue, class BFSVisitor,

class ColorMap>
void breadth_first_search(const IncidenceGraph& g, 

vertex_descriptor s,  Queue& Q,
BFSVisitor vis, ColorMap color);

Effect parallelism by using appropriate types:
Distributed graph
Distributed queue
Distributed property map

Our sequential implementation is also parallel!
Parallel BGL can just “wrap up” sequential BFS

“Implementing” Parallel BFS



BGL Architecture



Parallel BGL Architecture



Algorithms in the Parallel BGL
Breadth-first search* 
Eager Dijkstra’s 
single-source shortest 
paths*
Crauser et al. single-
source shortest paths*
Depth-first search
Minimum spanning 
tree (Boruvka*, Dehne 
& Götz‡)

Connected 
components‡

Strongly connected 
components†

Biconnected 
components
PageRank*
Graph coloring
Fruchterman-Reingold 
layout*
Max-flow†

*  Algorithms that have been lifted from a sequential implementation
† Algorithms built on top of parallel BFS
‡ Algorithms built on top of their sequential counterparts



Lifting for Hybrid Programming?



Abstraction and Performance
Myth: Abstraction is the enemy of 
performance.
The BGL sparse-matrix ordering routines 
perform on par with hand-tuned Fortran 
codes.

Other generic C++ libraries have had similar 
successes (MTL, Blitz++, POOMA)

Reality: Poor use of abstraction can result in 
poor performance.

Use abstractions the compiler can eliminate.



Weak Scaling Dijkstra SSSP

Erdos-Renyi graph with 2.5M vertices and 12.5M (directed) edges per processor.  Maximum graph 
size is 240M vertices and 1.2B edges on 96 processors.



Strong Scaling Delta Stepping

Delta-Stepping on an Erdos-Renyi graph with average degree 4.  The largest problem solved is
1B vertices and 4B edges using 96 processors.



Strong Scaling

Performance of three SSSP algorithms on fixed-sized graphs with ~24M vertices and ~58M edges



Weak Scaling

Weak scalability of three SSSP algorithms using graphs with an average of 1M vertices and
10M edges per processor.



The BGL Family

The Original (sequential) BGL

BGL-Python

The Parallel BGL

Parallel BGL-Python

(Parallel) BGL-VTK



For More Information…
(Sequential) Boost Graph Library
http://www.boost.org/libs/graph/doc
Parallel Boost Graph Library
http://www.osl.iu.edu/research/pbgl
Python Bindings for (Parallel) BGL
http://www.osl.iu.edu/~dgregor/bgl-python
Contacts:

Andrew Lumsdaine lums@osl.iu.edu
Jeremiah Willcock jewillco@osl.iu.edu
Nick Edmonds ngedmonds@osl.iu.edu

mailto:jewillco@osl.iu.edu
mailto:ngedmonds@osl.iu.edu


Summary
Effective software practices evolve from 
effective software practices

Explicitly study this in context of HPC 
Parallel BGL

Generic parallel graph algorithms for 
distributed-memory parallel computers
Reusable for different applications, graph 
structures, communication layers, etc
Efficient, scalable



Questions?



Disclaimer
Some images in this talk were cut and 
pasted from web sites found with Google 
Image Search and are used without 
permission. I claim their inclusion in this talk 
is permissible as fair use.
Please do not redistribute this talk.
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