
PBGL: A High-Performance
Distributed-Memory Parallel

Graph Library

Andrew Lumsdaine
Indiana University
lums@osl.iu.edu

My Goal in Life

Performance with elegance

Introduction
Overview of our high-
performance, industrial
strength, graph library

Comprehensive features
Impressive results
Separation of concerns

Lessons on software use
and reuse
Thoughts on advancing
high-performance
(parallel) software

Advancing HPC Software
Why is writing high performance software so
hard?
Because writing software is hard!
High performance software is software
All the old lessons apply
No silver bullets

Not a language
Not a library
Not a paradigm

Things do get better
but slowly

Advancing HPC Software

Progress, far from
consisting in change,

depends on

Progress, far from
consisting in change,

depends on
retentiveness.

Progress, far from
consisting in change,

depends on
retentiveness. Those

who cannot remember
the past are condemned

to repeat it.

Advancing HPC Software
Name the two most important pieces of HPC
software over last 20 years

BLAS
MPI

Why are these so important?
Why did they succeed?

Evolution of a Discipline

Craft

Production

Commercialization

Science

Professional Engineering

Cf. Shaw, Prospects for an engineering
discipline of software, 1990.

Virtuosos, talented amateurs
Extravagant use of materials
Design by intuition, brute force
Knowledge transmitted slowly, casually
Manufacture for use rather than sale

Skilled craftsmen
Established procedure
Training in mechanics
Concern for cost
Manufacture for sale

Educated professionals
Analysis and theory
Progress relies on science
Analysis enables new apps
Market segmented by

product variety

Evolution of Software Practice

Why MPI Worked

Distributed
Memory Hardware

NX
Shmem
P4, PVM
Sockets

Message
Passing
Rules!

MPI

“Legacy MPI codes”

MPICH
LAM/MPI

Open MPI
…

Today

Ubiquitous
Multicore

Pthtreads
Cilk
TBB
Charm++
…

Tasks,
not threads

???

???

???

Tomorrow

Hybrid
Dream/Nightmare

Vision/Hallucination

MPI + X
Charm++
UPC
???

???

???

???

???

What Doesn’t Work
Codification

Models, Theories

Languages
Improved Practice

Performance with Elegance
Construct high-performance (and elegant!)
software that can evolve in robust fashion
Must be an explicit goal

The Parallel Boost Graph Library
Goal: To build a generic library of efficient,
scalable, distributed-memory parallel graph
algorithms.

Approach: Apply advanced software paradigm
(Generic Programming) to categorize and describe
the domain of parallel graph algorithms. Separate
concerns. Reuse sequential BGL software base.

Result: Parallel BGL. Saved years of effort.

Graph Computations
Irregular and unbalanced
Non-local
Data driven
High data to computation ratio

Intuition from solving PDEs may not apply

Generic Programming
A methodology for the construction of
reusable, efficient software libraries.

Dual focus on abstraction and efficiency.
Used in the C++ Standard Template Library

Platonic Idealism applied to
software

Algorithms are naturally abstract,
generic (the “higher truth”)
Concrete implementations are just
reflections (“concrete forms”)

Generic Programming Methodology
Study the concrete implementations of an
algorithm
Lift away unnecessary requirements to produce
a more abstract algorithm

Catalog these requirements.
Bundle requirements into concepts.

Repeat the lifting process until we have
obtained a generic algorithm that:

Instantiates to efficient concrete implementations.
Captures the essence of the “higher truth” of that
algorithm.

Lifting Summation

int sum(int* array, int n) {
int s = 0;
for (int i = 0; i < n; ++i)

s = s + array[i];
return s;

}

float sum(float* array, int n) {
float s = 0;
for (int i = 0; i < n; ++i)

s = s + array[i];
return s;

}

Lifting Summation

Lifting Summation
template<typename T>
T sum(T* array, int n) {
T s = 0;
for (int i = 0; i < n; ++i)

s = s + array[i];
return s;

}

Lifting Summation

double sum(list_node* first, list_node* last) {
double s = 0;
while (first != last) {

s = s + first->data; first = first->next; }
return s;

}

Lifting Summation
template <InputIterator Iter>
value_type sum(Iter first, Iter last) {

value_type s = 0;
while (first != last)

s = s + *first++;
return s;

}

Lifting Summation

float product(list_node* first, list_node* last) {
float s = 1;
while (first != last) {

s = s * first->data; first = first->next; }
return s;

}

Generic Accumulate
template <InputIterator Iter, typename T,

typename Op>
T accumulate(Iter first, Iter last, T s, Op op) {

while (first != last)
s = op(s, *first++);

return s;
}
Generic form captures all accumulation:

Any kind of data (int, float, string)
Any kind of sequence (array, list, file, network)
Any operation (add, multiply, concatenate)

Interface defined by concepts
Instantiates to efficient, concrete implementations

Specialization
Synthesizes efficient code for a particular use of a
generic algorithm:
int array[20];
accumulate(array, array + 20, 0,

std::plus<int>());

… generates the same code as our initial sum function
for integer arrays.

Specialization works by breaking down
abstractions

Typically, replace type parameters with concrete types.
Lifting can only use abstractions that compiler
optimizers can eliminate.

Lifting and Specialization
Specialization is dual to lifting

The Boost Graph Library (BGL)
A graph library developed with the generic
programming paradigm

Lift requirements on:
Specific graph structure
Edge and vertex types
Edge and vertex properties
Associating properties with vertices and edges
Algorithm-specific data structures (queues, etc.)

The Boost Graph Library (BGL)
Comprehensive and mature

~10 years of research and development
Many users, contributors outside of the OSL
Steadily evolving

Written in C++
Generic
Highly customizable
Highly efficient

Storage and execution

BGL: Algorithms (partial list)
Searches (breadth-first,
depth-first, A*)
Single-source shortest
paths (Dijkstra, Bellman-
Ford, DAG)
All-pairs shortest paths
(Johnson, Floyd-Warshall)
Minimum spanning tree
(Kruskal, Prim)
Components (connected,
strongly connected,
biconnected)
Maximum cardinality
matching

Max-flow (Edmonds-
Karp, push-relabel)
Sparse matrix ordering
(Cuthill-McKee, King,
Sloan, minimum degree)
Layout (Kamada-Kawai,
Fruchterman-Reingold,
Gursoy-Atun)
Betweenness centrality
PageRank
Isomorphism
Vertex coloring
Transitive closure
Dominator tree

BGL: Graph Data Structures
Graphs:

adjacency_list: highly configurable with
user-specified containers for vertices and edges
adjacency_matrix
compressed_sparse_row

Adaptors:
subgraphs, filtered graphs, reverse graphs
LEDA and Stanford GraphBase

Or, use your own…

BGL Architecture

Parallelizing the BGL
Starting with the sequential BGL…

Three ways to build new algorithms or data
structures

1. Lift away restrictions that make the component
sequential (unifying parallel and sequential)

2. Wrap the sequential component in a
distribution-aware manner.

3. Implement any entirely new, parallel
component.

Lifting for Parallelism
Remove assumptions made by most
sequential algorithms:

A single, shared address space.
A single “thread” of execution.

Platonic ideal: unify parallel and sequential
algorithms

Our goal: Build the Parallel BGL by lifting the
sequential BGL.

Breadth-First Search

Parallellizing BFS?

Parallellizing BFS?

Distributed Graph
One fundamental operation:

Enumerate out-edges of a
given vertex

Distributed adjacency list:
Distribute vertices
Out-edges stored with the
vertices

Parallellizing BFS?

Parallellizing BFS?

Distributed Queue
Three fundamental operations:

top/pop retrieves from queue
push operation adds to queue
empty operation signals
termination

Distributed queue:
Separate, local queues
top/pop from local queue
push sends to a remote queue
empty waits for remote sends

Parallellizing BFS?

Parallellizing BFS?

Distributed Property Maps
Two fundamental operations:

put sets the value for a
vertex/edge
get retrieves the value

Distributed property map:
Store data on same processor
as vertex or edge
put/get send messages
Ghost cells cache remote
values
Resolver combines puts

Generic interface from the Boost Graph Library
template<class IncidenceGraph, class Queue, class BFSVisitor,

class ColorMap>
void breadth_first_search(const IncidenceGraph& g,

vertex_descriptor s, Queue& Q,
BFSVisitor vis, ColorMap color);

Effect parallelism by using appropriate types:
Distributed graph
Distributed queue
Distributed property map

Our sequential implementation is also parallel!
Parallel BGL can just “wrap up” sequential BFS

“Implementing” Parallel BFS

BGL Architecture

Parallel BGL Architecture

Algorithms in the Parallel BGL
Breadth-first search*
Eager Dijkstra’s
single-source shortest
paths*
Crauser et al. single-
source shortest paths*
Depth-first search
Minimum spanning
tree (Boruvka*, Dehne
& Götz‡)

Connected
components‡

Strongly connected
components†

Biconnected
components
PageRank*
Graph coloring
Fruchterman-Reingold
layout*
Max-flow†

* Algorithms that have been lifted from a sequential implementation
† Algorithms built on top of parallel BFS
‡ Algorithms built on top of their sequential counterparts

Lifting for Hybrid Programming?

Abstraction and Performance
Myth: Abstraction is the enemy of
performance.
The BGL sparse-matrix ordering routines
perform on par with hand-tuned Fortran
codes.

Other generic C++ libraries have had similar
successes (MTL, Blitz++, POOMA)

Reality: Poor use of abstraction can result in
poor performance.

Use abstractions the compiler can eliminate.

Weak Scaling Dijkstra SSSP

Erdos-Renyi graph with 2.5M vertices and 12.5M (directed) edges per processor. Maximum graph
size is 240M vertices and 1.2B edges on 96 processors.

Strong Scaling Delta Stepping

Delta-Stepping on an Erdos-Renyi graph with average degree 4. The largest problem solved is
1B vertices and 4B edges using 96 processors.

Strong Scaling

Performance of three SSSP algorithms on fixed-sized graphs with ~24M vertices and ~58M edges

Weak Scaling

Weak scalability of three SSSP algorithms using graphs with an average of 1M vertices and
10M edges per processor.

The BGL Family

The Original (sequential) BGL

BGL-Python

The Parallel BGL

Parallel BGL-Python

(Parallel) BGL-VTK

For More Information…
(Sequential) Boost Graph Library
http://www.boost.org/libs/graph/doc
Parallel Boost Graph Library
http://www.osl.iu.edu/research/pbgl
Python Bindings for (Parallel) BGL
http://www.osl.iu.edu/~dgregor/bgl-python
Contacts:

Andrew Lumsdaine lums@osl.iu.edu
Jeremiah Willcock jewillco@osl.iu.edu
Nick Edmonds ngedmonds@osl.iu.edu

mailto:jewillco@osl.iu.edu
mailto:ngedmonds@osl.iu.edu

Summary
Effective software practices evolve from
effective software practices

Explicitly study this in context of HPC
Parallel BGL

Generic parallel graph algorithms for
distributed-memory parallel computers
Reusable for different applications, graph
structures, communication layers, etc
Efficient, scalable

Questions?

Disclaimer
Some images in this talk were cut and
pasted from web sites found with Google
Image Search and are used without
permission. I claim their inclusion in this talk
is permissible as fair use.
Please do not redistribute this talk.

	PBGL: A High-Performance Distributed-Memory Parallel Graph Library
	My Goal in Life
	Introduction
	Advancing HPC Software
	Advancing HPC Software
	Advancing HPC Software
	Evolution of a Discipline
	Evolution of Software Practice
	Why MPI Worked
	Today
	Tomorrow
	What Doesn’t Work
	Performance with Elegance
	The Parallel Boost Graph Library
	Graph Computations
	Generic Programming
	Generic Programming Methodology
	Lifting Summation
	Lifting Summation
	Lifting Summation
	Lifting Summation
	Lifting Summation
	Lifting Summation
	Generic Accumulate
	Specialization
	Lifting and Specialization
	The Boost Graph Library (BGL)
	The Boost Graph Library (BGL)
	BGL: Algorithms (partial list)
	BGL: Graph Data Structures
	BGL Architecture
	Parallelizing the BGL
	Lifting for Parallelism
	Breadth-First Search
	Parallellizing BFS?
	Parallellizing BFS?
	Distributed Graph
	Parallellizing BFS?
	Parallellizing BFS?
	Distributed Queue
	Parallellizing BFS?
	Parallellizing BFS?
	Distributed Property Maps
	“Implementing” Parallel BFS
	BGL Architecture
	Parallel BGL Architecture
	Algorithms in the Parallel BGL
	Lifting for Hybrid Programming?
	Abstraction and Performance
	Weak Scaling Dijkstra SSSP
	Strong Scaling Delta Stepping
	Strong Scaling
	Weak Scaling
	The BGL Family
	For More Information…
	Summary
	Questions?
	Disclaimer
	Slide Number 59

