
Application Experience
with the GPU:

Explicit Finite Elements

Isaac Dooley

7th Annual Workshop on Charm++ and its Applications

Thursday, April 16th, 2009

1

Application: 3D finite elements for
non-homogeneous materials.

2

NVIDIA Tesla S1070

NVIDIA Tesla S1070 Specifications:

• 960 Cores (240 per processor)

• 4.14 TFlops Single Precision

• 345 GFlops Double Precision

• 16GB RAM

4

192 NCSA Lincoln Cluster Nodes:

• Two Intel Harpertown quad
core E5410 CPUs

• Half of a Tesla Unit (2 GPUs)

• InfiniBand interconnect fabric

5

Application: 3D finite elements for
non-homogeneous materials.

Update nodal displacements

Copy force data from GPU

Sum forces on shared nodes

Copy force data to GPU

Compute nodal forces from displacements
using the stiffness matrix

Update velocity & acceleration

Impose boundary conditions
P

h
y
s
ic

s
S

y
n

c
h

ro
n

iz
a

ti
o

n

Routines that can run on either CPU or GPU

GPU specific routines

CPU specific routines

If target time not reached

6

Application: Implementation

nodeIterator itr;
for(nodeItr_Begin(itr); nodeItr_IsValid(itr); nodeItr_Next(itr)){
 n_data=node_GetData(itr);
 for(inti=0;i<dof;++i){
 constFP_TYPE a_old=n_data->a[i];
 n_data->a[i] = -n_data->F[i]/n_data->mass;
 n_data->v[i] += 0.5*dt*(n_data->a[i]+a_old);
 }
}

n_data=node_GPU_GetData(my_node);
for(inti=0;i<dof;++i){
 constFP_TYPE a_old = n_data->a[i];
 n_data->a[i] = -n_data->F[i]/n_data->mass;
 n_data->v[i] += 0.5*dt*(n_data->a[i]+a_old);
}

CPU Version GPU CUDA Version

Uses an Iterator Interface on ParFUM
Kernel code

7

Mesh over-decomposed into many pieces.

Pieces can execute either on CPU or GPU.

Balance number of pieces between CPU and GPU
Manager processors.

Domain specific framework: ParFUM + Iterator Interface

Iterator Interface was customized for CPU & CUDA.

8

Application: Implementation

Application Specific Characteristic

Bytes
Element 1184
Node 912

Single PrecisionDouble Precision

Bytes
Element 592
Node 460

Larger than usual data per element/node

9

Goals / Unknowns

Can this program use the GPUs well?
Most similar published work achieves speedup of 7 on 1 GPU.

What changes will have to be made to adapt it to CUDA?

Can our existing methodology apply to heterogeneous
clusters?

How well will this program scale?

10

0 50 100 150 200
Timestep number

0

0.1

0.2

0.3

Ti
m

e
to

 e
xe

cu
te

 th
e

tim
es

te
p

(s
ec

on
ds

)

11

Early Performance Problem with CPU Version

Execution time per simulation step

0 50 100 150 200
Timestep number

0

0.1

0.2

0.3

Ti
m

e
to

 e
xe

cu
te

 th
e

tim
es

te
p

(s
ec

on
ds

)

Timeline view:

12

Early Performance Problem with CPU Version

Execution time per simulation step

Early Performance Problem with CPU Version

Execution time per simulation step:

0 50 100 150 200
Timestep number

0

0.1

0.2

0.3

Ti
m

e
to

 e
xe

cu
te

 th
e

tim
es

te
p

(s
ec

on
ds

)

Denorms are present
Denorms are eliminated with DAZ mode

13

Application: Main GPU Optimizations

• Minimized data copied
to/from main memory

• Asynchronously
executed kernels,
memory transfers

• Overlapping CPU work
with Asynchronous GPU
kernels

0

1

2

3

4

Baseline Pack Async Overlap

Normalized Performance

14

Application: Load Balancing CPU/GPU

• Current approach: manually tune number of
mesh pieces on each GPU/CPU

• Future approach: Develop a heterogeneous
load balancer that can automatically map
mesh pieces to CPU/GPUs ! How?

• Future approach: Use control point
framework to autotune the ratio.

15

Approach to Understanding Performance

Examine timeline visualizations
Measure time/step
Measure memory overhead

16

Strong scaling (Same mesh size):
1 core to 1 node

Weak scaling (Scale up mesh sizes):
1 node to 128 nodes

Scaling

235K tetrahedra

30M tetrahedra

17

Resulting Application Performance

20 40 60 80 100 120

Number of Nodes

20

40

60

80

100

120

S
p

e
d

u
p

 O
v
e

r
1

 N
o

d
e

Single-Precision

Double-Precision

97% , 99% Parallel Efficiency

18

0 20 40 60 80 100 120

Number of Nodes

0

500

1000

1500

2000

S
p

e
d

u
p

 O
v
e

r
1

 C
P

U
 C

o
re

Single-Precision

Double-Precision

Resulting Application Performance

19

Application Performance

12%

24%

39%

24%

Read Data
Compute Forces
Writing Data
Other

CPU

54%

9%

37%

GPU

Measured by eliminating portions of code & timing
20

• Memory accesses take majority of time on
GPU. Potential future improvements?

• Manual load balancing works, but we would
like runtime support for instrumented
heterogeneous load balancing.

• Finite element simulations with large amount
of data per element achieve modest
speedups on GPU.

Application: Lessons Learned

21

The End

Questions?

Suggestions?

Isaac Dooley
idooley2@uiuc.edu

22

mailto:idooley2@uiuc.edu
mailto:idooley2@uiuc.edu

