
The Vision
Components

Charon: linear algebra made easy

G. M. Crosswhite

Department of Physics
University of Washington

Thursday, April 16, 2009

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

My story

1 Quantum computing!
2 Can we build a reliable memory for quantum bits?
3 Numerical simulation of quantum systems
4 New algorithms for quantum simulations
5 Can they be made to scale?

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

My story

1 Quantum computing!
2 Can we build a reliable memory for quantum bits?
3 Numerical simulation of quantum systems
4 New algorithms for quantum simulations
5 Can they be made to scale?

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

My story

1 Quantum computing!
2 Can we build a reliable memory for quantum bits?
3 Numerical simulation of quantum systems
4 New algorithms for quantum simulations
5 Can they be made to scale?

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

My story

1 Quantum computing!
2 Can we build a reliable memory for quantum bits?
3 Numerical simulation of quantum systems
4 New algorithms for quantum simulations
5 Can they be made to scale?

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

My story

1 Quantum computing!
2 Can we build a reliable memory for quantum bits?
3 Numerical simulation of quantum systems
4 New algorithms for quantum simulations
5 Can they be made to scale?

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

My story

1 Quantum computing!
2 Can we build a reliable memory for quantum bits?
3 Numerical simulation of quantum systems
4 New algorithms for quantum simulations
5 Can they be made to scale?

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Let’s do it!

Tools we need:
Tensor I/O
Tensor contractions
Singular Value Decompositions (SVDs)
Minimum eigenvalue solving

Tools we have:
MPI Parallel I/O
Global Arrays
SciLAPACK
ARPACK

Problems:
Incomplete!
Cumbersome to use!

Lots of boilerplate and plumbing code needed
Synchronous communication model

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Let’s do it!

Tools we need:
Tensor I/O
Tensor contractions
Singular Value Decompositions (SVDs)
Minimum eigenvalue solving

Tools we have:
MPI Parallel I/O
Global Arrays
SciLAPACK
ARPACK

Problems:
Incomplete!
Cumbersome to use!

Lots of boilerplate and plumbing code needed
Synchronous communication model

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Let’s do it!

Tools we need:
Tensor I/O
Tensor contractions
Singular Value Decompositions (SVDs)
Minimum eigenvalue solving

Tools we have:
MPI Parallel I/O
Global Arrays
SciLAPACK
ARPACK

Problems:
Incomplete!
Cumbersome to use!

Lots of boilerplate and plumbing code needed
Synchronous communication model

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Let’s do it!

Tools we need:
Tensor I/O
Tensor contractions
Singular Value Decompositions (SVDs)
Minimum eigenvalue solving

Tools we have:
MPI Parallel I/O
Global Arrays
SciLAPACK
ARPACK

Problems:
Incomplete!
Cumbersome to use!

Lots of boilerplate and plumbing code needed
Synchronous communication model

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

The Vision

A parallel linear-algebra intensive code should not be
more complicated than the algorithm being implemented.

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

A Simple Example

1 Read in an array
2 Increment all entries in the array by 1
3 Sum all of the entries in the array
4 Divide all entries in the array by the sum
5 Write out the array

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

A Simple Example

DistributedArray<float,1> A(16,1<<20);
A.loadFrom("infile");
A += 1;
float s = A.sum();
A /= s;
A.writeTo("outfile");

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

A More Complicated Example

1 Read in matrices A and B
2 Invert A and B
3 Multiply them together to form M
4 Break M apart back into A and B using a SVD
5 Invert A and B again
6 Save A and B

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

A More Complicated Example

DistributedArray<float,2> A(8,1024,1024),
B(8,1024,1024), M(16,1024,1024);

DistributedArray<float,1> Sigma(16,1024);
A.loadFrom("A.in"); B.loadFrom("B.in");
inv(A); inv(B);
matmul(A,B,M);
svd(S,A,Sigma,B);
inv(A); inv(B);
A.writeTo("A.out"); B.writeTo("B.out");

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Maestro, please!

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Maestro, please!

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Maestro, please!

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Maestro, please!

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Maestro, please!

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Maestro, please!

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Maestro, please!

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Maestro, please!

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Maestro, please!

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Maestro, please!

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

The Recipe

Ingrediants:
Asynchronous communication
Master/Slave architecture
Explicit ordering and data dependencies

The result:
Local coordination of task scheduling

(Caveat: Central decisions)

Automatic parallelization of parallel tasks
(Effectively building and walking a DAG.)

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

The Recipe

Ingrediants:
Asynchronous communication
Master/Slave architecture
Explicit ordering and data dependencies

The result:
Local coordination of task scheduling

(Caveat: Central decisions)

Automatic parallelization of parallel tasks
(Effectively building and walking a DAG.)

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

The Recipe

Ingrediants:
Asynchronous communication
Master/Slave architecture
Explicit ordering and data dependencies

The result:
Local coordination of task scheduling

(Caveat: Central decisions)

Automatic parallelization of parallel tasks
(Effectively building and walking a DAG.)

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

The Recipe

Ingrediants:
Asynchronous communication
Master/Slave architecture
Explicit ordering and data dependencies

The result:
Local coordination of task scheduling

(Caveat: Central decisions)

Automatic parallelization of parallel tasks
(Effectively building and walking a DAG.)

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Why Charm++?

Asynchronous communication model
AMPI provides “virtualization” MPI libraries
Emphasis on higher-level programming

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Why Charm++?

Asynchronous communication model
AMPI provides “virtualization” MPI libraries
Emphasis on higher-level programming

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Why Charm++?

Asynchronous communication model
AMPI provides “virtualization” MPI libraries
Emphasis on higher-level programming

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Why Charm++?

Asynchronous communication model
AMPI provides “virtualization” MPI libraries
Emphasis on higher-level programming

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

The Components

Array Master/Slave Controller
Distributed Array
Block-cyclic Array

Operations
AMPI Master/Slave Controller

BLACS Grid Master/Slave (interface to BLACS)
Block IO Master/Slave (interface to ROMIO)

Matrix multiplier

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

The Components

Array Master/Slave Controller
Distributed Array
Block-cyclic Array

Operations
AMPI Master/Slave Controller

BLACS Grid Master/Slave (interface to BLACS)
Block IO Master/Slave (interface to ROMIO)

Matrix multiplier

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

The Components

Array Master/Slave Controller
Distributed Array
Block-cyclic Array

Operations
AMPI Master/Slave Controller

BLACS Grid Master/Slave (interface to BLACS)
Block IO Master/Slave (interface to ROMIO)

Matrix multiplier

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

The Components

Array Master/Slave Controller
Distributed Array
Block-cyclic Array

Operations
AMPI Master/Slave Controller

BLACS Grid Master/Slave (interface to BLACS)
Block IO Master/Slave (interface to ROMIO)

Matrix multiplier

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

The Components

Array Master/Slave Controller
Distributed Array
Block-cyclic Array

Operations
AMPI Master/Slave Controller

BLACS Grid Master/Slave (interface to BLACS)
Block IO Master/Slave (interface to ROMIO)

Matrix multiplier

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

The Components

Array Master/Slave Controller −→ ordered
Distributed Array
Block-cyclic Array

Operations
AMPI Master/Slave Controller −→ coordinated

BLACS Grid Master/Slave (interface to BLACS)
Block IO Master/Slave (interface to ROMIO)

Matrix multiplier

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Array Master/Slave Architecture

Question: How do we enforce ordering of operations?
Answer: Operation counters + slave priority queues

Question: How do we implement the counter?

Global counter for all slaves
Commands sent to single slaves waste bandwidth!

Separate counter for each slave
Huge table needed to track counters!
Global operations can no longer be broadcasted!

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Array Master/Slave Architecture

Question: How do we enforce ordering of operations?
Answer: Operation counters + slave priority queues

Question: How do we implement the counter?

Global counter for all slaves
Commands sent to single slaves waste bandwidth!

Separate counter for each slave
Huge table needed to track counters!
Global operations can no longer be broadcasted!

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Array Master/Slave Architecture

Question: How do we enforce ordering of operations?
Answer: Operation counters + slave priority queues

Question: How do we implement the counter?

Global counter for all slaves
Commands sent to single slaves waste bandwidth!

Separate counter for each slave
Huge table needed to track counters!
Global operations can no longer be broadcasted!

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Array Master/Slave Architecture

Question: How do we enforce ordering of operations?
Answer: Operation counters + slave priority queues

Question: How do we implement the counter?

Global counter for all slaves
Commands sent to single slaves waste bandwidth!

Separate counter for each slave
Huge table needed to track counters!
Global operations can no longer be broadcasted!

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Array Master/Slave Architecture

Question: How do we enforce ordering of operations?
Answer: Operation counters + slave priority queues

Question: How do we implement the counter?

Global counter for all slaves
Commands sent to single slaves waste bandwidth!

Separate counter for each slave
Huge table needed to track counters!
Global operations can no longer be broadcasted!

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Array Master/Slave Architecture

Question: How do we enforce ordering of operations?
Answer: Operation counters + slave priority queues

Question: How do we implement the counter?

Global counter for all slaves
Commands sent to single slaves waste bandwidth!

Separate counter for each slave
Huge table needed to track counters!
Global operations can no longer be broadcasted!

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Array Master/Slave Architecture

Question: How do we enforce ordering of operations?
Answer: Operation counters + slave priority queues

Question: How do we implement the counter?

Global counter for all slaves
Commands sent to single slaves waste bandwidth!

Separate counter for each slave
Huge table needed to track counters!
Global operations can no longer be broadcasted!

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Array Master/Slave Architecture

Question: How do we enforce ordering of operations?
Answer: Operation counters + slave priority queues

Question: How do we implement the counter?

Global counter for all slaves
Commands sent to single slaves waste bandwidth!

Separate counter for each slave
Huge table needed to track counters!
Global operations can no longer be broadcasted!

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Array Master/Slave Architecture

My solution: Global counter with “stealing”

Every operation increments the global counter
Single slaves may “steal” a value of the counter
Broadcasts to all slaves contain a list of who stole the
counter since the last broadcast. This way every slave
knows which values they should skip and which they need
to wait for.

Example:
1 Broadcast 1→ 1, []
2 Pointcast 2 to A
3 Pointcast 3 to B
4 Broadcast 1→ 4, [A,B]

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Array Master/Slave Architecture

My solution: Global counter with “stealing”

Every operation increments the global counter
Single slaves may “steal” a value of the counter
Broadcasts to all slaves contain a list of who stole the
counter since the last broadcast. This way every slave
knows which values they should skip and which they need
to wait for.

Example:
1 Broadcast 1→ 1, []
2 Pointcast 2 to A
3 Pointcast 3 to B
4 Broadcast 1→ 4, [A,B]

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Array Master/Slave Architecture

My solution: Global counter with “stealing”

Every operation increments the global counter
Single slaves may “steal” a value of the counter
Broadcasts to all slaves contain a list of who stole the
counter since the last broadcast. This way every slave
knows which values they should skip and which they need
to wait for.

Example:
1 Broadcast 1→ 1, []
2 Pointcast 2 to A
3 Pointcast 3 to B
4 Broadcast 1→ 4, [A,B]

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Array Master/Slave Architecture

My solution: Global counter with “stealing”

Every operation increments the global counter
Single slaves may “steal” a value of the counter
Broadcasts to all slaves contain a list of who stole the
counter since the last broadcast. This way every slave
knows which values they should skip and which they need
to wait for.

Example:
1 Broadcast 1→ 1, []
2 Pointcast 2 to A
3 Pointcast 3 to B
4 Broadcast 1→ 4, [A,B]

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Array Master/Slave Architecture

My solution: Global counter with “stealing”

Every operation increments the global counter
Single slaves may “steal” a value of the counter
Broadcasts to all slaves contain a list of who stole the
counter since the last broadcast. This way every slave
knows which values they should skip and which they need
to wait for.

Example:
1 Broadcast 1→ 1, []
2 Pointcast 2 to A
3 Pointcast 3 to B
4 Broadcast 1→ 4, [A,B]

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

DistributedArray

Templated on type and dimension
Master:

Operation ordering
Addressing – map from coordinates to slave number

Slaves: (1D array)
Operation execution
Local data stored using Blitz++, a high level array class
templated on type and dimension

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

DistributedArray

Templated on type and dimension
Master:

Operation ordering
Addressing – map from coordinates to slave number

Slaves: (1D array)
Operation execution
Local data stored using Blitz++, a high level array class
templated on type and dimension

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

DistributedArray

Templated on type and dimension
Master:

Operation ordering
Addressing – map from coordinates to slave number

Slaves: (1D array)
Operation execution
Local data stored using Blitz++, a high level array class
templated on type and dimension

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

DistributedArray

Templated on type and dimension
Master:

Operation ordering
Addressing – map from coordinates to slave number

Slaves: (1D array)
Operation execution
Local data stored using Blitz++, a high level array class
templated on type and dimension

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Operations

Whole-array transformations
add/subtract/divide/multiply by a constant
sine, cosine, absolute value
randomization
etc.

Single-element transformations
Array reductions (sum, product, etc.)

Stupidly easy to implement more:
Add to one of my switch statements
Subclass Operation

Templates are your friend!

Don’t need to case over the type of the array.
Not limited to numeric types / operations!

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Operations

Whole-array transformations
add/subtract/divide/multiply by a constant
sine, cosine, absolute value
randomization
etc.

Single-element transformations
Array reductions (sum, product, etc.)

Stupidly easy to implement more:
Add to one of my switch statements
Subclass Operation

Templates are your friend!

Don’t need to case over the type of the array.
Not limited to numeric types / operations!

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Operations

Whole-array transformations
add/subtract/divide/multiply by a constant
sine, cosine, absolute value
randomization
etc.

Single-element transformations
Array reductions (sum, product, etc.)

Stupidly easy to implement more:
Add to one of my switch statements
Subclass Operation

Templates are your friend!

Don’t need to case over the type of the array.
Not limited to numeric types / operations!

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Example

DistributedArray<int,3> vec(6,2,3,4);
Array<int,3> x(2,3,4);

x = 1, 2, 3, 4,
5, 6, 7, 8,
9,10,11,12,

-1,-2,-3,-5,
-7,-9,-11,-13,
-17,-19,-23,-29,
-31,-37,-41,-43;

vec = x;

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Example

vec++;
vec *= -1;

cout << "0,0,0 = " << (int)vec(0,0,0) << endl;

for(int i = 0; i < 2; i++)
for(int j = 0; j < 3; j++)

for(int k = 0; k < 4; k += 2)
vec(i,j,k) *= -1;

vec.abs();

vec.gatherInto(x);

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

AMPI Controller

Purpose: To allow access to libraries written in MPI
BLACS – opens the door to parallel linear algebra libraries
such as ScaLAPACK
ROMIO – parallel I/O

Contains no data itself
Requires coordination but not ordering
Uses TCharm to provide the virtual MPI layer

Slaves inherit from TCharm
Constructor launches the TCharm thread
TCharm thread pulls operations from a “ready” queue until
none are left, then it goes to sleep
Slave chare wakes up the thread when a new operation is
ready to be run

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

AMPI Controller

Purpose: To allow access to libraries written in MPI
BLACS – opens the door to parallel linear algebra libraries
such as ScaLAPACK
ROMIO – parallel I/O

Contains no data itself
Requires coordination but not ordering
Uses TCharm to provide the virtual MPI layer

Slaves inherit from TCharm
Constructor launches the TCharm thread
TCharm thread pulls operations from a “ready” queue until
none are left, then it goes to sleep
Slave chare wakes up the thread when a new operation is
ready to be run

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

AMPI Controller

Purpose: To allow access to libraries written in MPI
BLACS – opens the door to parallel linear algebra libraries
such as ScaLAPACK
ROMIO – parallel I/O

Contains no data itself
Requires coordination but not ordering
Uses TCharm to provide the virtual MPI layer

Slaves inherit from TCharm
Constructor launches the TCharm thread
TCharm thread pulls operations from a “ready” queue until
none are left, then it goes to sleep
Slave chare wakes up the thread when a new operation is
ready to be run

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

AMPI Controller

Purpose: To allow access to libraries written in MPI
BLACS – opens the door to parallel linear algebra libraries
such as ScaLAPACK
ROMIO – parallel I/O

Contains no data itself
Requires coordination but not ordering
Uses TCharm to provide the virtual MPI layer

Slaves inherit from TCharm
Constructor launches the TCharm thread
TCharm thread pulls operations from a “ready” queue until
none are left, then it goes to sleep
Slave chare wakes up the thread when a new operation is
ready to be run

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

AMPI Controller

Purpose: To allow access to libraries written in MPI
BLACS – opens the door to parallel linear algebra libraries
such as ScaLAPACK
ROMIO – parallel I/O

Contains no data itself
Requires coordination but not ordering
Uses TCharm to provide the virtual MPI layer

Slaves inherit from TCharm
Constructor launches the TCharm thread
TCharm thread pulls operations from a “ready” queue until
none are left, then it goes to sleep
Slave chare wakes up the thread when a new operation is
ready to be run

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Privateer

Problem: Most C libraries are not designed to be
multi-threaded! They assume that they have exclusive access
to their global/static variables.

Solution: Replace all references to global/static variables with
pointers into a thread-local structure.

Privateer accomplishes this, and is designed to work on
arbitrary C code; it uses a Converse thread-private variable to
store a pointer to the global variable table for the thread.

http://launchpad.net/privateer

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Privateer

Problem: Most C libraries are not designed to be
multi-threaded! They assume that they have exclusive access
to their global/static variables.

Solution: Replace all references to global/static variables with
pointers into a thread-local structure.

Privateer accomplishes this, and is designed to work on
arbitrary C code; it uses a Converse thread-private variable to
store a pointer to the global variable table for the thread.

http://launchpad.net/privateer

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Privateer

Problem: Most C libraries are not designed to be
multi-threaded! They assume that they have exclusive access
to their global/static variables.

Solution: Replace all references to global/static variables with
pointers into a thread-local structure.

Privateer accomplishes this, and is designed to work on
arbitrary C code; it uses a Converse thread-private variable to
store a pointer to the global variable table for the thread.

http://launchpad.net/privateer

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Matrix Multiplication

∑
j

Aij · Bjk = Cik

Chare (i , j , k) computes Aij · Bjk , and then contributes to a sum
reduction on the section (i , :, k).

Chunks sent in an ArrayMessage to minimize copying.

Each chare only needs to know
Reduction section
Result callback

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Matrix Multiplication

∑
j

Aij · Bjk = Cik

Chare (i , j , k) computes Aij · Bjk , and then contributes to a sum
reduction on the section (i , :, k).

Chunks sent in an ArrayMessage to minimize copying.

Each chare only needs to know
Reduction section
Result callback

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Matrix Multiplication

∑
j

Aij · Bjk = Cik

Chare (i , j , k) computes Aij · Bjk , and then contributes to a sum
reduction on the section (i , :, k).

Chunks sent in an ArrayMessage to minimize copying.

Each chare only needs to know
Reduction section
Result callback

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Matrix Multiplication

∑
j

Aij · Bjk = Cik

Chare (i , j , k) computes Aij · Bjk , and then contributes to a sum
reduction on the section (i , :, k).

Chunks sent in an ArrayMessage to minimize copying.

Each chare only needs to know
Reduction section
Result callback

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Matrix Multiplication

A · B · C · D = (A · B) · (C · D)

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Closing

Status:
Basic infrastructure largely complete; lots of simple
operations could easily be implemented
Still wrestling with getting libraries to work under AMPI

(Global variable privatization problem has been solved by
Privateer.)

Need to profile matrix multiplication algorithm and extend
to implement tensor contractions

Repositories Online:
http://launchpad.net/privateer

http://launchpad.net/charon

Please let me know what you think and/or want!

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Closing

Status:
Basic infrastructure largely complete; lots of simple
operations could easily be implemented
Still wrestling with getting libraries to work under AMPI

(Global variable privatization problem has been solved by
Privateer.)

Need to profile matrix multiplication algorithm and extend
to implement tensor contractions

Repositories Online:
http://launchpad.net/privateer

http://launchpad.net/charon

Please let me know what you think and/or want!

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Closing

Status:
Basic infrastructure largely complete; lots of simple
operations could easily be implemented
Still wrestling with getting libraries to work under AMPI

(Global variable privatization problem has been solved by
Privateer.)

Need to profile matrix multiplication algorithm and extend
to implement tensor contractions

Repositories Online:
http://launchpad.net/privateer

http://launchpad.net/charon

Please let me know what you think and/or want!

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Closing

Status:
Basic infrastructure largely complete; lots of simple
operations could easily be implemented
Still wrestling with getting libraries to work under AMPI

(Global variable privatization problem has been solved by
Privateer.)

Need to profile matrix multiplication algorithm and extend
to implement tensor contractions

Repositories Online:
http://launchpad.net/privateer

http://launchpad.net/charon

Please let me know what you think and/or want!

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Closing

Status:
Basic infrastructure largely complete; lots of simple
operations could easily be implemented
Still wrestling with getting libraries to work under AMPI

(Global variable privatization problem has been solved by
Privateer.)

Need to profile matrix multiplication algorithm and extend
to implement tensor contractions

Repositories Online:
http://launchpad.net/privateer

http://launchpad.net/charon

Please let me know what you think and/or want!

G. M. Crosswhite Charon: linear algebra made easy



The Vision
Components

Closing

Status:
Basic infrastructure largely complete; lots of simple
operations could easily be implemented
Still wrestling with getting libraries to work under AMPI

(Global variable privatization problem has been solved by
Privateer.)

Need to profile matrix multiplication algorithm and extend
to implement tensor contractions

Repositories Online:
http://launchpad.net/privateer

http://launchpad.net/charon

Please let me know what you think and/or want!

G. M. Crosswhite Charon: linear algebra made easy


	The Vision
	Components

