
ParFUM: 
A Parallel Framework for Unstructured Meshes

Aaron Becker, Isaac Dooley, Terry Wilmarth, Sayantan Chakravorty
Charm++ Workshop 2008



What is ParFUM?

• A framework for writing parallel finite element codes

• Takes care of difficult tasks involved in parallelizing a serial code

• Provides advanced mesh operations such as mesh adaptivity and 
dynamic load balancing

• Constantly evolving to support application needs (for example, 
cohesive elements and collision detection)

• Based on Charm++ and AMPI. Supports C, C++, and Fortran



Making Parallel Finite Element Codes Easier

Create mesh

Perform finite element 
computations

Extract results

A simple serial finite 
element code:



Making Parallel Finite Element Codes Easier

Create mesh

Perform finite element 
computations

Extract results

Partition mesh

Distribute mesh data and 
create “ghost” layers

with synchronization
and load balancing

A simple parallel 
finite element code:



Making Parallel Finite Element Codes Easier

Create mesh

Perform finite element 
computations

Extract results

Partition mesh

Distribute mesh data and 
create ghost layers

with synchronization 
and load balancing

ParFUM can do these 
things automatically 
and let the developer 
concentrate on science 
and engineering



The Structure of a ParFUM Program

Init

Driver

MPI

Charm++

MSAPartitioning and 
Distribution



The Big Picture

7

ParFUM

Load Balancing Framework Communication Optimizations

Charm++AMPIMulti-phase
Shared
Arrays

System View

Partitioning

Ghost Layer
Generation

Bulk
Adaptivity

Incremental
Adaptivity

Collision
Detection

Contact

Solution
Transfer

User's
Solver

Adjacency
Generation

IFEM

pTopS

User View

Charm
Run-time 
System



Integrating Multiple Programming Models

8

ParFUM

Load Balancing Framework Communication Optimizations

Charm++AMPIMulti-phase
Shared
Arrays

System View

Partitioning

Ghost Layer
Generation

Bulk
Adaptivity

Incremental
Adaptivity

Collision
Detection

Contact

Solution
Transfer

User's
Solver

Adjacency
Generation

IFEM

pTopS

User View

Charm
Run-time 
System

Global 
Shared 
Memory

Message 
Passing

Message 
Driven



ParFUM and AMPI

• Application code is written in AMPI, an implementation of MPI on 
top of the Charm RTS. 

• AMPI processes (virtual processors, or VPs) are not tied to a physical 
processor, they can migrate and there may be many of them per 
physical processor

• This allows easier porting of MPI codes and eases the learning curve 
of ParFUM



Virtualization Tradeoffs

Advantages

•Allows adaptive overlap 
of communication and 
computation

•More granular load 
balancing

•Improved cache 
performance

•More flexibility 

Disadvantages

•More communication

•Worse ratio of remote 
data to local data

•Imposes some thread 
overhead

•High virtualization 
requires many elements 
per node



Virtualization Performance Impact

For this dynamic fracture code, virtualization 
provides a substantial benefit



Parallel Mesh Adaptivity

• Efficient parallel adaptivity is critical for many unstructured mesh codes

• ParFUM provides two implementations of common operations:

• incremental (2D triangle meshes): each individual operation leaves 
the mesh consistent. Relatively slow and puts limitations on ghost 
layers

• bulk (2D triangles and 3D tets): many operations performed at once, 
ghosts and adjacencies updated at end. Lower cost, no restrictions 
on ghost layers. (ongoing work)



Higher Level Adaptivity

• Operations like propagating edge bisection are composed from edge 
bisect, flip, and contraction primitives

• Which is better, bulk or incremental? Depends on amount and 
frequency of adaptivity

Propagating Edge Bisection



Load Balance, Adaptivity, and Virtualization

Serious load imbalance: areas near fracture are 
much more expensive



Load Balance, Adaptivity, and Virtualization

We can change the VP mapping to distribute 
computationally expensive parts of the mesh better



Load Balance, Adaptivity, and Virtualization

Assigning VPs using a greedy load balancer further 
improves utilization



Spacetime Meshing

• Parallelization of Spacetime Discontinuous Galerkin (SDG) algorithm 
[Haber]

• Adaptive in both space and time,
 uses incremental adaptivity

• Asynchronous code, no global 
barriers



PTops

• Structural dynamics code for graded materials [Paulino]

• Based on Tops, a serial framework featuring an efficient topological 
mesh representation



PTops Strong Scaling

400,000 elements on Abe
No virtualization



PTops and CUDA

• ParFUM-Tops interface has CUDA support

• Our implementation runs ~10x faster on a single node using CUDA

• Limited usefulness due to lack of double precision and lack of 
access to clusters which combine GPUs and high quality 
interconnects



Ongoing Work

• On-demand insertion of cohesive elements (truly extrinsic cohesives) 
in PTops for dynamic fracture simulations

• Efficient, scalable implementation of bulk
edge flip and edge contraction

• Contact: use Charm++ collision detection
library to detect when domain fragments 
come into contact



ParFUM: 
A Parallel Framework for Unstructured Meshes

Aaron Becker, Sayantan Chakravorty, Isaac Dooley, Terry Wilmarth
Parallel Programming Lab
Charm++ Workshop 2008


