
The Evolution of MPI

William Gropp
Computer Science

www.cs.uiuc.edu/homes/wgropp

2

Outline

1. Why an MPI talk?
2. MPI Status: Performance,

Scalability, and Functionality
3. Changes to MPI: MPI Forum

activites
4. What this (should) mean for you

3

Why an MPI Talk?

• MPI is the common base for tools
• MPI as the application programming

model
• MPI is workable at petascale, though

starting to face limits. At exascale,
probably a different matter

• One successful way to handle scaling
and complexity is to break the problem
into smaller parts
• At Petascale and above, one solution

strategy is to combine programming models

4

Review of Some MPI
Features and Issues

• RMA
 Also called “one-sided”, these provide put/get/accumulate
 Some published results suggest that these perform poorly
 Are these problems with the MPI implementation or the MPI

standard (or both)?
 How should the performance be measured?

• MPI-1
 Point-to-point operations and process layout (topologies)

• How important is the choice of mode? Topology?
 Algorithms for the more general collective operations

• Can these be simple extensions of the less general algorithms?

• Thread Safety
 With multicore/manycore, the fad of the moment
 What is the cost of thread safety in typical application uses?

• I/O
 MPI I/O includes nonblocking I/O
 MPI (the standard) provided a way to layer the I/O

implementation, using “generalized requests”. Did it work?

5

Some Weaknesses in MPI

• Easy to write code that performs and scales poorly
 Using blocking sends and receives

• The attractiveness of the blocking model suggests a mismatch
between the user’s model and the MPI model of parallel
computing

 The right fix for this is better performance tuning tools
• Don’t change MPI, improve the environment
• The same problem exists for C, Fortran, etc.
• One possibility - model checking against performance

assertions

• No easy compile-time optimizations
 Only MPI_Wtime, MPI_Wtick, and the handler conversion

functions may be macros.
 Sophisticated analysis allows inlining
 Does it make sense to optimize for important special cases

• Short messages? Contiguous messages? Are there lessons
from the optimizations used in MPI implementations?

6

Issues that are not issues (1)

• MPI and RDMA networks and programming models
 MPI can make good use of RDMA networks
 Comparisons with MPI sometimes compare apples and

oranges
• How do you signal completion at the target?
• Cray SHMEM succeeded because of SHMEM_Barrier - an easy

and efficiently implemented (with special hardware) way to
indicate completion of RDMA operations

• Latency
 Users often confuse Memory access times and CPU times;

expect to see remote memory access times on the order of
register access

 Without overlapped access, a single memory reference is
100’s to 1000’s of cycles

 A load-store model for reasoning about program
performance isn’t enough

• Don’t forget memory consistency issues

7

Issues that are not issues (2)

• MPI “Buffers” as a scalability limit
 This is an implementation issue that existing MPI

implementations for large scale systems already address
• Buffers do not need to be preallocated

• Fault Tolerance (as an MPI problem)
 Fault Tolerance is a property of the application; there is no

magic solution
 MPI implementations can support fault tolerance

• RADICMPI is a nice example that includes fault recovery
 MPI intended implementations to continue through faults

when possible
• That’s why there is a sophisticated error reporting mechanism
• What is needed is a higher standard of MPI implementation,

not a change to the MPI standard
 But - Some algorithms do need a more convenient way to

manage a collection of processes that may change
dynamically

• This is not a communicator

8

Scalability Issues in the MPI
Definition

• How should you define scalable?
 Independent of number of processes

• Some routines do not have scalable arguments
 E.g., MPI_Graph_create

• Some routines require O(p) arrays
 E.g., MPI_Group_incl, MPI_Alltoall

• Group construction is explicit (no MPI_Group_split)
• Implementation challenges

 MPI_Win definition, if you wish to use a remote memory operation by
address, requires each process to have the address of each remote
processes local memory window (O(p) data at each process).

 Various ways to recover scalability, but only at additional overhead
and complexity

• Some parallel approaches require “symmetric allocation”
• Many require Single Program Multiple Data (SPMD)

 Representations of Communicators other than MPI_COMM_WORLD
(may be represented implicitly on highly scalable systems)

• Must not enumerate members, even internally

9

Performance Issues

• Library interface introduces overhead
 ~200 instructions ?

• Hard (though not impossible) to “short cut” the MPI
implementation for common cases
 Many arguments to MPI routines
 These are due to the attempt to limit the number of basic routines

• You can’t win --- either you have many routines (too complicated) or too
few (too inefficient)

• Is MPI for users? Library developers? Compiler writers?

• Computer hardware has changed since MPI was designed (1992 -
e.g., DEC announces Alpha)
 SMPs are more common
 Cache-coherence (within a node) almost universal

• MPI RMA Epochs provided (in part) to support non-coherent memory
• May become important again - fastest single chips are not cache coherent

 Interconnect networks support “0-copy” operations
 CPU/Memory/Interconnect speed ratios
 Note that MPI is often blamed for the poor fraction of peak

performance achieved by parallel programs. (But the real culprit is
often per-node memory performance)

10

Performance Issues (2)

• MPI-2 RMA design supports non-cache-coherent systems
 Good for portability to systems of the time
 Complex rules for memory model (confuses users)

• But note that the rules are precise and the same on all platforms
 Performance consequences

• Memory synchronization model
• One example: Put requires an ack from the target process

• Missing operations
 No Read-Modify-Write operations
 Very difficult to implement even fetch-and-increment

• Requires indexed datatypes to get scalable performance(!)
• We’ve found bugs in vendor MPI RMA implementations when testing

this algorithm
 Challenge for any programming model

• What operations are provided?
• Are there building blocks, akin to the load-link/store-conditional

approach to processor atomic operations?

• How fast is a good MPI RMA implementation?

11

MPI RMA and Proccess
Topologies

• To properly evaluate RMA, particularly with
respect to point-to-point communication, it is
necessary to separate data transfer from
synchronization

• An example application is Halo Exchange
because it involves multiple communications
per sync

• Joint work with Rajeev Thakur (Argonne),
Subhash Saini (NASA Ames)

• This is also a good example for process
topologies, because it involves communication
between many neighboring processes

12

MPI One-Sided
Communication

• Three data transfer functions
 Put, get, accumulate

• Three synchronization methods
 Fence
 Post-start-complete-wait
 Lock-unlock

• A natural choice for implementing halo
exchanges
 Multiple communication per synchronization

MPI_Put

MPI_Get

13

Halo Exchange

• Decomposition of a mesh into 1 patch
per process

• Update formula typically a(I,j) =
f(a(i-1,j),a(i+1,j),a(I,j+1),a(I,j-1),…)

• Requires access to “neighbors” in
adjacent patches

14

Performance Tests

• “Halo” exchange or ghost-cell exchange operation
 Each process exchanges data with its nearest neighbors
 Part of the mpptest benchmark; works with any MPI

implementation
• Even handles implementations that only provide a subset of MPI-2 RMA

functionality
• Similar code to that in halocompare, but doesn’t use process topologies

(yet)�

 One-sided version uses all 3 synchronization methods

• Available from
• http://www.mcs.anl.gov/mpi/mpptest
• Ran on

 Sun Fire SMP at here are RWTH, Aachen, Germany
 IBM p655+ SMP at San Diego Supercomputer Center

15
15

One-Sided Communication on
Sun SMP with Sun MPI

Halo Performance on Sun

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000 1200

Bytes

u
S

e
c

sendrecv-8

psendrecv-8

putall-8

putpscwalloc-8

putlockshared-8

putlocksharednb-8

16
16

One-Sided Communication
on IBM SMP with IBM MPI

Halo Performance (IBM-7)

0

50

100

150

200

250

300

350

0 200 400 600 800 1000 1200

Bytes

u
S

e
c

sendrecv-2

psendrecv-2

put-2

putpscw-2

sendrecv-4

psendrecv-4

put-4

putpscw-4

17

Observations on MPI RMA
and Halo Exchange

• With a good implementation and
appropriate hardware, MPI RMA
can provide a performance benefit
over MPI point-to-point

• However, there are other effects
that impact communication
performance in modern machines…

18

Experiments with Topology and Halo
Communication on “Leadership Class”

Machines
• The following slides show some results for a simple halo

exchange program (halocompare) that tries several MPI-
1 approaches and several different communicators:
 MPI_COMM_WORLD
 Dup of MPI_COMM_WORLD

• Is MPI_COMM_WORLD special in terms of performance?
 Reordered communicator - all even ranks in

MPI_COMM_WORLD first, then the odd ranks
• Is ordering of processes important?

 Communicator from MPI_Dims_create/MPI_Cart_create
• Does MPI Implementation support these, and do they help

• Communication choices are
 Send/Irecv
 Isend/Irecv
 “Phased”

19

Method 1: Use Irecv and
Send

• Do i=1,n_neighbors
Call MPI_Irecv(inedge(1,i), len, MPI_REAL, nbr(i), tag,&

comm, requests(i), ierr)
Enddo
Do i=1,n_neighbors

Call MPI_Send(edge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, ierr)

Enddo
Call MPI_Waitall(n_neighbors, requests, statuses, ierr)

• Does not perform well in practice (at least on BG, SP).
 Quiz for the audience: Why?

20

Method 2: Use Isend and
Irecv

• Do i=1,n_neighbors
Call MPI_Irecv(inedge(1,i),len,MPI_REAL,nbr(i),tag,&

comm, requests(i),ierr)
Enddo
Do i=1,n_neighbors

Call MPI_Isend(edge(1,i), len, MPI_REAL, nbr(i), tag,&
comm, requests(n_neighbors+i), ierr)

Enddo
Call MPI_Waitall(2*n_neighbors, requests, statuses, ierr)

21

Halo Exchange on BG/L

• 64 processes, co-processor mode, 2048 doubles to each
neighbor

• Rate is MB/Sec (for all tables)

194104218107Cart_create

937111481Even/Odd
13394199112World

Irecv/IsendIrecv/SendIrecv/IsendIrecv/Send

8 Neighbors4 Neighbors

22

Halo Exchange on BG/L

• 128 processes, virtual-node mode, 2048
doubles to each neighbor

• Same number of nodes as previous table

132103201103Cart_create

47416448Even/Odd

726312064World

Irecv/IsendIrecv/SendIrecv/IsendIrecv/Send

8 Neighbors4 Neighbors

23

Halo Exchange on Cray XT4

• 1024 processes, 2000 doubles to each neighbor

143

137

165

Phased

117117137133Cart_create

111114126128Even/Odd

136133153153World

Irecv/IsendIrecv/SendIrecv/IsendIrecv/Send

8 Neighbors4 Neighbors

164

119

139

Phased

128129151151Cart_create

104104116113Even/Odd

114115131131World

Irecv/IsendIrecv/SendIrecv/IsendIrecv/Send

8 Neighbors4 Neighbors(Periodic)

24

Halo Exchange on Cray XT4

• 1024 processes, SN mode, 2000 doubles to each neighbor

266

279

331

Phased

232236275265Cart_create

206212247257Even/Odd

269262306311World

Irecv/IsendIrecv/SendIrecv/IsendIrecv/Send

8 Neighbors4 Neighbors

319

220

262

Phased

254256306300Cart_create

197192217217Even/Odd

233230268264World

Irecv/IsendIrecv/SendIrecv/IsendIrecv/Send

8 Neighbors4 Neighbors(Periodic)

25

Observations on Halo
Exchange

• Topology is important (again)
• For these tests, MPI_Cart_create always a good idea for

BG/L; often a good idea for periodic meshes on Cray
XT3/4
 Not clear if MPI_Cart_create creates optimal map on Cray

• Cray performance is significantly under what the “ping-
pong” performance test would predict
 The success of the “phased” approach on the Cray

suggests that some communication contention may be
contributing to the slow-down

• Either contention along links (which should not happen when
MPI_Cart_create is used) or contention at the destination
node.

 To see this, consider the performance of a single process
sending to four neighbors

26

Discovering Performance
Opportunities

• Lets look at a single process sending to its neighbors. We
expect the rate to be roughly twice that for the halo (since
this test is only sending, not sending and receiving)

1808181117011701XT4 SN

1770177316201634XT4

1045105310071005XT3

239239294294BG/L, VN

389389490488BG/L

PeriodicPeriodic

8 Neighbors4 neighborsSystem

 BG gives roughly double the halo rate. XTn is much higher

 It should be possible to improve the halo exchange on the XT by
scheduling the communication

 Or improving the MPI implementation

27

Discovering Performance
Opportunities

• Ratios of a single sender to all processes sending (in rate)
• Expect a factor of roughly 2 (since processes must also receive)

7.066.735.565.47XT4 SN

13.713.010.710.7XT4

9.419.088.17.5XT3

1.811.46BG/L, VN

2.012.24BG/L

PeriodicPeriodic

8 Neighbors4 neighborsSystem

 BG gives roughly double the halo rate. XTn is much higher

 It should be possible to improve the halo exchange on the XT by
scheduling the communication

 Or improving the MPI implementation (But is it topology routines or point-
to-point communication? How would you test each hypothesis?)

28
28

Efficient Support for
MPI_THREAD_MULTIPLE

• MPI-2 allows users to write multithreaded programs and
call MPI functions from multiple threads
(MPI_THREAD_MULTIPLE)

• Thread safety does not come for free, however
• Implementation must protect certain data structures or

parts of code with mutexes or critical sections
• To measure the performance impact, we ran tests to

measure communication performance when using
multiple threads versus multiple processes

• These results address issues with the thread
programming model, in the context of a demanding
application (an MPI implementation)

• Joint work with Rajeev Thakur (Argonne)

29

Application Assumptions
about Threads

• Thread support cost little, particularly
when not used
(MPI_Init_thread(MPI_THREAD_FUNNEL
ED)

• Threads and processes have equal
communication performance

• Blocked operations in one thread do not
slow down other threads

• How true are these assumptions?

30

Cost of Thread Support

• Can an application use
MPI_Init_thread(
MPI_THREAD_FUNNELED,…) if it
does not need thread support,
instead of MPI_Init?

• Requires either a very low cost
support for threads or runtime
selection of no thread
locks/atomic operations if
THREAD_FUNNELED requested.

• How well do MPI implementations
do with this simple test?
 The IBM SP implementation has

very low overhead
 The Sun implementation has about

a 3.5 usec overhead
• Shows cost of providing thread

safety
• This cost can be lowered, but

requires great care

31

Tests with Multiple Threads
versus Processes

31

T

T

T

T

T

T

T

T

P

P

P

P

P

P

P

P

• Consider these two
cases:
 Nodes with 4 cores
 1 process with four

threads aasends to 1
process with four threads,
each thread sending, or

 4 processes, each with
one thread, sending to a
corresponding thread

• User expectation is that
the performance is the
same

32

Concurrent Bandwidth Test

33

Impact of Blocking
Operations

• The MPI Forum rejected
separate, non-blocking
collective operations (for
some good reasons),
arguing that these can be
implemented by placing a
blocking collective in a
separate thread.

• Consider such a sample
program, where a compute loop
(no communication) is in one
thread, and an MPI_Allreduce is
in the second thread

• Question: How does the
presence of the Allreduce
thread impact the compute
loop?

34

Challenges in Reducing
Thread Overhead

• Communication test
involves sending to
multiple destination
processes

• Using a single
synchronization model
(global critical section)
results in a slowdown

• Using narrower sections
permits greater
concurrency but still has
significant overhead
 Even when assembly-

level processor-atomic,
lock-free operations
used (atom) and thread-
local pools of data
structures (tlp)

• Hard to beat processes

Pavan Balaji, Darius Buntinas,
David Goodell, William Gropp,
and Rajeev Thakur

35

Notes on Thread
Performance

• Providing Thread support with
performance is hard

• Applications should not assume
fast thread support

• More application-inspired tests are
needed

36

Where Does MPI Need to
Change?

• Nowhere
 There are many MPI legacy applications
 MPI has added routines to address problems rather than changing

them
 For example, to address problems with the Fortran binding and

64-bit machines, MPI-2 added MPI_Get_address and
MPI_Type_create_xxx and deprecated (but did not change or
remove) MPI_Address and MPI_Type_xxx.

• Where does MPI need to add routines and deprecate others?
 One Sided

• Designed to support non-coherent memory on a node, allow execution
in network interfaces, and nonblocking memory motion

• Put requires ack (to enforce ordering)
• Lock/put/unlock model very heavy-weight for small updates
• Generality of access makes passive-target RMA difficult to implement

efficiently (exploiting RDMA hardware)
• Users often believe MPI_Put and MPI_Get are blocking (poor choice of

name, should have been MPI_Iput and MPI_Iget).
 Various routines with “int” arguments for “count”

• In a world of 64 bit machines and multiGB laptops, 32-bit ints are no
longer large enough

37

Extensions

• What does MPI need that it doesn’t have?
• Don’t start with that question. Instead ask

 What tool do I need? Is there something that MPI needs
to work well with that tool (that it doesn’t already have)?

• Example: Debugging
 Rather than define an MPI debugger, develop a thin and

simple interface to allow any MPI implementation to
interact with any debugger

• Candidates for this kind of extension
 Interactions with process managers

• Thread co-existance (MPIT discussions)
• Choice of resources (e.g., placement of processes with

Spawn) Interactions with Integrated Development
Environments (IDE)

 Tools to create and manage MPI datatypes
 Tools to create and manage distributed data structures

• A feature of the HPCS languages

38

MPI Forum

• The MPI Forum is the ad hoc group that
created the MPI standard

• Made up of vendors, users, and
researchers

• Uses a formal process to create and
correct the standard
 Votes, membership rules, etc.

• Anyone with interest may join and
attend
 No fees, other than travel to meetings

• More information
 http://meetings.mpi-forum.org/

39

MPI 2.1

• Clarifications to the MPI 2.0 Standard
documents, resulting in a single
document describing the full MPI 2.1
standard. This includes merging of all
previous MPI standards documents into
a single document, adding text
corrections, and adding clarifying text.

• Status: Combined MPI Standard
Document drafted and reviewed

• MPI Forum voted to accept any
errata/clarifications

• Thanks to Rolf Rabenseifner, HLRS

40

MPI 2.2

• Small changes to the MPI 2.1 standard.
A small change is defined as one that
does not break existing user code,
either by interface changes or by
semantic changes, and does not require
large implementation changes.

• Status:
 Two nontrival enhancements

• Reuse of send buffers
• Consistent use of const

 Many errata updates
 William Gropp, UIUC

41

MPI Forum Efforts: The Next
Generation

• MPI 3.0 - Additions to the MPI 2.2 standard
that are needed for better platform and
application support. These are to be
consistent with MPI being a library that
provides parallel process management and
data exchange capabilities. This includes, but
is not limited to, issues associated with
scalability (performance and robustness),
multi-core support, cluster support, and
applications support.

42

MPI 3 Working Groups

• Application Binary Interface - A common ABI,
particularly for commodity hardware/software pairs

• Collective Operations - Additions including nonblocking
collectives

• Fault Tolerance - Enhanced support for fault tolerant
applications in MPI

• Fortran Bindings - Address the problems and limitations
of the Fortran 90 MPI bindings.

• Generalized Requests - Provide alternative progress
models that match other parts of the system

• MPI Sub-Setting - Define compatible subsets of MPI
• Point-To-Point Communications - Additions and/or

changes
• Remote Memory Access - Re-examine the MPI RMA

interface and consider additions and/or changes

43

What This Means for You

• How can MPI coexist with other
programming models?
 Where does MPI need to change?
 Where do others need to change?
 Example: allocation of thread/process

resources
• What could MPI provide to better

support other tools?
• What can MPI learn from the success of

Charm++?
• How should MPI evolve? You can help!

