
1

Isaac Dooley, Chao Mei, Laxmikant Kale

6th Annual Workshop on
Charm++ and its Applications

May 1 2008

NOISEMINER:
An Algorithm for Scalable Automatic

Computational Noise and
Software Interference Detection

2

For details, see our paper in the
HIPS workshop at IPDPS 2008

NoiseMiner: An Algorithm for Scalable Automatic
Computational Noise and Software Interference Detection

Motivation

A run of NAMD on a new cluster at a
supercomputing center was performing poorly.

Why?

Timely manual analysis of trace logs for simplified
runs showed that some portions of the
computation were taking 6ms longer than
expected. (Due to a bug in the MPI library)

3

Computational Noise

Work

Time to do Work

4

Computational Noise

Work

Work

Time to do Work

Work

Noise

Time to do Work

4

Noise In Parallel

Time to do Work

5

Step 1Procesor 1

Procesor 2

Procesor 3

Procesor 4

Step 1

Step 1

Step 1

Step 2

Step 2

Step 2

Step 2

Noise In Parallel

Time to do Work

Step 1

Step 1

Step 1

NoiseStep 1

6

Noise In Parallel

Time to do Work

Step 1

Step 1

Step 1

Step 2

Step 2

Step 2Noise

NoiseStep 2

Step 1

6

How To Detect Noise?

Manually analyze logs

Use a micro-benchmark

Automated analysis tools

7

Our Contributions

NOISEMINER is the first automated tool* for
detecting computational noise in complex
real-world parallel applications.

NOISEMINER reduces the time to identify
potential symptoms of computational noise.

* A sequential pattern mining algorithm was proposed by Vahid Tabatabaee, Jeffrey
K. Hollingsworth in their SC07 paper Automatic Software Interference Detection
in Parallel Applications. To the best of my knowledge the tools have not been
publicly released.

8

Assumptions
A parallel program’s execution can be
decomposed into a set of events of various
types.

The events have durations.

Events of the same type should have roughly
similar durations.

Events with abnormally long durations are
potential symptoms of noise.

9

Events in Charm++

10

Two types of events:

Entry Method Invocations

When neither idle nor executing an entry
method.

Events in MPI

11

rank 0

rank 1

Time

int main(int argc, char ** argv){
 ...
 MPI_Init(&argc, &argv);
 ...
 MPI_Barrier(MPI_COMM_WORLD);
 for(int i=0;i<NITER;i++){
 if(rank % 2 == 0) {
 MPI_Send(..., rank+1, ...);
 MPI_Recv(...,rank+1, ...);
 } else {
 MPI_Recv(..., rank-1, ...);
 MPI_Send(..., rank-1, ...);
 }
 do_work();
 }
 MPI_Barrier(MPI_COMM_WORLD);
 MPI_Finalize();
 return 0;
}

Events in MPI
int main(int argc, char ** argv){
 ...
 MPI_Init(&argc, &argv);
 ...
 MPI_Barrier(MPI_COMM_WORLD);
 for(int i=0;i<NITER;i++){
 if(rank % 2 == 0) {
 MPI_Send(..., rank+1, ...);
 MPI_Recv(...,rank+1, ...);
 } else {
 MPI_Recv(..., rank-1, ...);
 MPI_Send(..., rank-1, ...);
 }
 do_work();
 }
 MPI_Barrier(MPI_COMM_WORLD);
 MPI_Finalize();
 return 0;
}

12

Events are regions between
consecutive MPI_* calls

Events are distinguished
into types based on the
preceding MPI Call(source
location)

rank 0

rank 1

Time

Events in MPI
int main(int argc, char ** argv){
 ...
 MPI_Init(&argc, &argv);
 ...
 MPI_Barrier(MPI_COMM_WORLD);
 for(int i=0;i<NITER;i++){
 if(rank % 2 == 0) {
 MPI_Send(..., rank+1, ...);
 MPI_Recv(...,rank+1, ...);
 } else {
 MPI_Recv(..., rank-1, ...);
 MPI_Send(..., rank-1, ...);
 }
 do_work();
 }
 MPI_Barrier(MPI_COMM_WORLD);
 MPI_Finalize();
 return 0;
}

13

int main(int argc, char ** argv){
 ...
 MPI_Init(&argc, &argv);
 ...
 MPI_Barrier(MPI_COMM_WORLD);
 for(int i=0;i<NITER;i++){
 if(rank % 2 == 0) {
 MPI_Send(..., rank+1, ...);
 MPI_Recv(...,rank+1, ...);
 } else {
 MPI_Recv(..., rank-1, ...);
 MPI_Send(..., rank-1, ...);
 }
 do_work();
 }
 MPI_Barrier(MPI_COMM_WORLD);
 MPI_Finalize();
 return 0;
}

r
a
n
k

0

r
a
n
k

1

Preceding MPI Call

Preceding MPI Call

rank 0

rank 1

Time

Noise Occurrences

NAMD with MPI bug
14

Problem

Quickly and scalably detect the abnormally long
events in a parallel program’s execution.

Then provide a useful analysis of the important
events.

15

Solution: NOISEMINER

A Stream Mining Algorithm:

Single pass through application traces

Bounded memory usage

Can be used online or offline(with traces)

Fast

16

Implementation

Noise Miner is included in Projections

Projections currently supports logs from:

Charm++, AMPI -tracemode projections

MPI linked with PMPI_Projections*

17

* PMPI_Projections module in Charm CVS

NOISEMINER Overview
1. Maintain a synopsis of events seen so far

(inserting events into windowed histograms)

2. Generate a report:

1. Cluster the histogram bins into groups
2. Determine a noise duration for each group
3. Filter out less-important groups
4. Merge groups across processors into Noise

Components
5. Display the most important Noise Components

18

NOISEMINER Synopsis

For each processor:
A histogram for each event type.
Each bin represents a range of event durations.

Each histogram bin contains:
A window of a fixed number of recent events
Count of events
Average duration of events

19

Cumulative

Sum

Count

Window

Cumulative

Sum

Count

Window

Cumulative

Sum

Count

Window

Cumulative

Sum

Count

Window

7ms

10

3ms

2

0ms

0

11ms

3

0ms

0

Cumulative

Sum

Count

Window

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

Durations:

0-1 ms

Durations:

1-2 ms

Durations:

2-3 ms

Durations:

3-4 ms

Durations:

4-5 ms

20

Example Histogram

Cumulative

Sum

Count

Window

Cumulative

Sum

Count

Window

Cumulative

Sum

Count

Window

Cumulative

Sum

Count

Window

7ms

10

3ms

2

0ms

0

11ms

3

0ms

0

Cumulative

Sum

Count

Window

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

Durations:

0-1 ms

Durations:

1-2 ms

Durations:

2-3 ms

Durations:

3-4 ms

Durations:

4-5 ms

NOISEMINER Report

Now we have a Synopsis:
Histogram for each event type on each processor

Lets generate a Report!

21

0 5 10 15

Histogram Bins

0

50

100

150

200

E
v
e
n
t
C

o
u
n
t

Group of Events With

Expected Durations

Histogram of Event Durations

Group of Events With

Long Durations

but Few Occurrences

Group of Events With

Long Durations

and Many Occurrences

22

Step 1: Group the Bins

0 5 10 15

Histogram Bins

0

50

100

150

200

E
v
e
n
t
C

o
u
n
t

Group of Events With

Expected Durations

Histogram of Event Durations

Group of Events With

Long Durations

but Few Occurrences

Group of Events With

Long Durations

and Many Occurrences

23

Step 1: Group the Bins

max

max
max

min min min

24

Merging Bins to Form Groups

100ms

10

Cumulative

Sum

Count

Window

40ms

5

Cumulative

Sum

Count

Window

+ =

140ms

15

Cumulative

Sum

Count

Window

Step 2:
Noise Components

1. Take each group and normalize its duration by the
expected duration.

2. Cluster all groups across processors
Iteratively merge similar groups based on a similarity function

3. The resulting clustered groups are called Noise
Components

4. Filter and Display important Noise Components

25

NoiseMiner Views:

26

27

Scalability

1. Inserting an event into synopsis is O(1)

2. Memory usage is O(1) on each processor

3. Combining groups across processors is scalable,
and can be performed in parallel as a user defined
reduction in a tree in O(log(p)) time.

28

Conclusions

NOISEMINER has helped detect computational noise
in real-world complicated application runs.

NOISEMINER is scalable, fast, and can analyze
arbitrarily large application runs.

29

