

Charm Workshop 2008 1

CkDirect: Charm++ RDMA Put

Presented by Eric Bohm
CkDirect Team: Eric Bohm, Sayantan

Chakravorty, Pritish Jetley, Abhinav Bhatele
ppl@cs.uiuc.edu

5/4/2008

mailto:ppl@cs.uiuc.edu

Charm Workshop 2008 2

What is CkDirect?

 One-sided communication
 One-way (put only, so far)
 Memory to memory interface
 Uses RDMA for zero copy
 No protocol synchronization
 User notification via callback
 Pair-wise persistent channels

Charm Workshop 2008 3

Motivating Example

Matrix A Matrix B

Proc1 Proc2 Proc3 Proc4

Proc5 Proc7 Proc8Proc6

Charm Workshop 2008 4

Messaging Approach

Proc2

Msg
S R

Dest Proc

A B

Send
Message

Msg
RS

Charm Workshop 2008 5

CkDirect Approach

Proc2 Dest Proc

A BPut

Charm Workshop 2008 6

RDMA Challenges

 Remote Direct Memory Access
 Minimal overhead => fast

 Put is more intuitive for message driven model
 Get: know remote location and remote data is ready
 Put: know remote location

 Interfaces for RDMA vary by interconnect
 Put completion notification is lacking

 either there is no notification
 or the put performance is hardly better than two-sided
 through trickery, we can do better than that.

Charm Workshop 2008 7

Where is it useful?

 When the same size data is transferred
between the same partners each iteration to
buffers which are reused

 When the application already enforces iteration
boundaries

 Especially when you need to aggregate data
from disparate sources into a contiguous buffer
before processing

Charm Workshop 2008 8

How does it work?

 User callback triggered on put completion
 Application must:

 register send and receive processor and memory
pairs in a handle

 register put completion callback for handle
 register out of band pattern for handle
 call ready when done using the received put data
 only 1 transaction per handle at a time
 trigger message from callback for real computation

Charm Workshop 2008 9

Sender Receiver

Request
Handle CkDirect

 _createHandle
CkDirect

HandleCkDirect
 _assocLocal

CkDirect _put User
Data Invoke callback

function

Iteration
Boundary

CkDirect_ready

CkDirect _put User
Data Invoke callback

function

CkDirect_ready

Charm Workshop 2008 10

Ping Pong Results

Charm Msg

MPICH-VMI

MVAPICH

MVAPICH-Put

-10 0 10 20 30 40 50

Percent Improvement Infiniband (Abe)

0.1
1

5
10
20
30
40
70
100

500

Charm Msg

MPI

MPI-Put

0 10 20 30 40 50 60 70

Percent Improvement BG/P (Surveyor)

0.1
1

5
10
20
30
40
70
100

500

Ping Pong, CkDirect relative improvement, by message size in 1000s of bytes

Charm Workshop 2008 11

Matrix Multiply Results

64 128 256 512

0

100

200

300

400

500

600

700

800

Infiniband (Abe)

Msg
CkD

Cores

T
im

e
64 128 256 512 1024 2048 4096

0

20

40

60

80

100

120

140

160

Blue Gene/P (Surveyor)

Msg
CkD

Cores

T
im

e

Matrix Multiply 2048*2048 average time in milliseconds

Charm Workshop 2008 12

Jacobi 3D Results

64 128 256 512 1024 2048 4096

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Num. processors

%
 Im

p
ro

ve
m

e
n

t o
ve

r
M

S
G

2 4 8 16 32 64 128 256

0

2

4

6

8

10

12

14

Num. processors
%

 Im
p

ro
ve

m
e

n
t

 Blue Gene/P (Surveyor) Infiniband (Abe)

Jacobi 3D 1024*1024*512, iteration time improvement from CkDirect

Charm Workshop 2008 13

OpenAtom Results

OpenAtom Water256M Benchmark, minimization, time per step in seconds

1024 2048 4096

0

1

2

3

4

5

6

7

8

Blue Gene/P (Surveyor) W256

Msg
CkD

Cores

T
im

e
 (

se
co

n
d

s)

1024 2048 4096

0

1

2

3

4

5

6

7

8

Blue Gene/P (Surveyor) W256

Msg
CkD

Cores

Ti
m

e
(s

ec
on

ds
)

Charm Workshop 2008 14

Reducing Polling Overhead

 Polling overhead is proportional to the number
of ready handles.

 To minimize the number of ready handles we
have a split scheme.
 CkDirect_readyMark

 Done with data, but don't start polling yet
 CkDirect_readyPoll

 Data was already marked, start checking

 Can detect puts completed since readyMark

Charm Workshop 2008 15

Iteration
Boundary

CkDirect_readyPoll

CkDirect _put User
Data

Invoke callback
function

CkDirect_readyMark

Iteration
Boundary

Phase
Boundary

Phase
Boundary

CkDirect_readyPoll

message sends
entry methods

CkDirect _put

User
Data

CkDirect_readyMark

CkDirect_readyPoll

User
Data

N
ot

 P
ol

lin
g

T
h

is
 H

a
nd

le
!

Charm Workshop 2008 16

The CkDirect API

/* Receiver side create handle */
struct infiDirectUserHandle CkDirect_createHandle(int senderNode,void *recvBuf, int
recvBufSize, void (*callbackFnPtr)(void *), void *callbackData,double initialValue);

/* Sender side register memory to handle */
void CkDirect_assocLocalBuffer(struct infiDirectUserHandle *userHandle,void *sendBuf,int
sendBufSize);

/* Sender side actual data transfer */
void CkDirect_put(struct infiDirectUserHandle *userHandle);

/* Receiver side done with buffer */
void CkDirect_readyMark(struct infiDirectUserHandle *userHandle);

/* Receiver side start checking for put */
void CkDirect_readyPollQ(struct infiDirectUserHandle *userHandle);

/* Receiver side done with buffer start checking for put */
void CkDirect_ready(struct infiDirectUserHandle *userHandle);

Charm Workshop 2008 17

Conclusions

 Availability: cvs version of charm
 net-linux-amd64-ibverbs
 bluegenep

 Future Work
 CkDirect multicasts
 Ports to other architectures

 Questions?
 Feedback?

