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What is CkDirect?

 One-sided communication
 One-way (put only, so far)
 Memory to memory interface
 Uses RDMA for zero copy
 No protocol synchronization
 User notification via callback
 Pair-wise persistent channels
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Motivating Example
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Messaging Approach
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CkDirect Approach
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RDMA Challenges

 Remote Direct Memory Access
 Minimal overhead => fast

 Put is more intuitive for message driven model
 Get: know remote location and remote data is ready
 Put: know remote location

 Interfaces for RDMA vary by interconnect
 Put completion notification is lacking

 either there is no notification
 or the put performance is hardly better than two-sided
 through trickery, we can do better than that.
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Where is it useful?

 When the same size data is transferred 
between the same partners each iteration to 
buffers which are reused

 When the application already enforces iteration 
boundaries

 Especially when you need to aggregate data 
from disparate sources into a contiguous buffer 
before processing
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How does it work?

 User callback triggered on put completion
 Application must:

 register send and receive processor and memory 
pairs in a handle

 register put completion callback for handle
 register out of band pattern for handle
 call ready when done using the received put data
 only 1 transaction per handle at a time
 trigger message from callback for real computation
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Sender Receiver
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Ping Pong Results
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Matrix Multiply Results
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Jacobi 3D Results
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OpenAtom Results

OpenAtom Water256M Benchmark, minimization, time per step  in seconds
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Reducing Polling Overhead

 Polling overhead is proportional to the number 
of ready handles.

 To minimize the number of ready handles we 
have a split scheme.
 CkDirect_readyMark

 Done with data, but don't start polling yet
 CkDirect_readyPoll

 Data was already marked, start checking

 Can detect puts completed since readyMark
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The CkDirect API

/* Receiver side create handle */
struct infiDirectUserHandle CkDirect_createHandle(int senderNode,void *recvBuf, int 
recvBufSize, void (*callbackFnPtr)(void *), void *callbackData,double initialValue);

/* Sender side register memory to handle */
void CkDirect_assocLocalBuffer(struct infiDirectUserHandle *userHandle,void *sendBuf,int 
sendBufSize);

/* Sender side actual data transfer */
void CkDirect_put(struct infiDirectUserHandle *userHandle);

/* Receiver side done with buffer */
void CkDirect_readyMark(struct infiDirectUserHandle *userHandle);

/* Receiver side start checking for put */
void CkDirect_readyPollQ(struct infiDirectUserHandle *userHandle);

/* Receiver side done with buffer start checking for put */
void CkDirect_ready(struct infiDirectUserHandle *userHandle);
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Conclusions

 Availability: cvs version of charm
 net-linux-amd64-ibverbs
 bluegenep

 Future Work
 CkDirect multicasts
 Ports to other architectures

 Questions?
 Feedback?


