
Fault Tolerance in Charm++/AMPI

Sayantan Chakravorty

PPL, UIUC

April 19, 2007

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 1 / 25



1 Motivation

2 Background

3 Checkpoint-based
Co-ordinated disk-based
In-memory double checkpoint

4 Message Logging

5 Pro-active fault tolerance

6 Summary

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 2 / 25



Motivation

Larger machines available, clusters as well as proprietary

MTBF decreases as size of machines increases

Long running applications have to tolerate faults

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 3 / 25



Background

Checkpoint
I Coordinated: Cocheck, Starfish, Clip
I Uncoordinated: suffers from cascading rollbacks
I Communication: does not scale well

Message Logging
I Pesssimistic: MPICH-V1, MPICH-V2 etc.
I Optimistic: cascading rollback, complicated recovery
I Causal Logging: causalty tracking, Manetho, MPICH-V3

Hybrid: Schultz et al, Bronevetsky et al

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 4 / 25



Background

Checkpoint
I Coordinated: Cocheck, Starfish, Clip
I Uncoordinated: suffers from cascading rollbacks
I Communication: does not scale well

Message Logging
I Pesssimistic: MPICH-V1, MPICH-V2 etc.
I Optimistic: cascading rollback, complicated recovery
I Causal Logging: causalty tracking, Manetho, MPICH-V3

Hybrid: Schultz et al, Bronevetsky et al

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 4 / 25



Background

Checkpoint
I Coordinated: Cocheck, Starfish, Clip
I Uncoordinated: suffers from cascading rollbacks
I Communication: does not scale well

Message Logging
I Pesssimistic: MPICH-V1, MPICH-V2 etc.
I Optimistic: cascading rollback, complicated recovery
I Causal Logging: causalty tracking, Manetho, MPICH-V3

Hybrid: Schultz et al, Bronevetsky et al

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 4 / 25



Background

Checkpoint
I Coordinated: Cocheck, Starfish, Clip
I Uncoordinated: suffers from cascading rollbacks
I Communication: does not scale well

Message Logging
I Pesssimistic: MPICH-V1, MPICH-V2 etc.
I Optimistic: cascading rollback, complicated recovery
I Causal Logging: causalty tracking, Manetho, MPICH-V3

Hybrid: Schultz et al, Bronevetsky et al

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 4 / 25



Solutions in Charm++

Reactive: react to a fault
I Disk based
I In-memory
I Message logging with fast recovery

Pro-active: act before a fault
I Fault prediction
I Evacuate processors after fault is predicted

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 5 / 25



Solutions in Charm++

Reactive: react to a fault
I Disk based
I In-memory
I Message logging with fast recovery

Pro-active: act before a fault
I Fault prediction
I Evacuate processors after fault is predicted

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 5 / 25



Solutions in Charm++

Reactive: react to a fault
I Disk based
I In-memory
I Message logging with fast recovery

Pro-active: act before a fault
I Fault prediction
I Evacuate processors after fault is predicted

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 5 / 25



Disk-based Checkpoint

Blocking Coordinated Checkpoint
I State of chares are checkpointed to parallel file system
I Collective MPI Checkpoint(DIRNAME)

Restart
I Whole job is restarted
I Same job can be restarted on different # of processors
I Runtime flag: +restart DIRNAME

Simple yet effective for common cases

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 6 / 25



Disk-based Checkpoint

Blocking Coordinated Checkpoint
I State of chares are checkpointed to parallel file system
I Collective MPI Checkpoint(DIRNAME)

Restart
I Whole job is restarted
I Same job can be restarted on different # of processors
I Runtime flag: +restart DIRNAME

Simple yet effective for common cases

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 6 / 25



Disk-based Checkpoint

Blocking Coordinated Checkpoint
I State of chares are checkpointed to parallel file system
I Collective MPI Checkpoint(DIRNAME)

Restart
I Whole job is restarted
I Same job can be restarted on different # of processors
I Runtime flag: +restart DIRNAME

Simple yet effective for common cases

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 6 / 25



Disk-based Checkpoint

Blocking Coordinated Checkpoint
I State of chares are checkpointed to parallel file system
I Collective MPI Checkpoint(DIRNAME)

Restart
I Whole job is restarted
I Same job can be restarted on different # of processors
I Runtime flag: +restart DIRNAME

Simple yet effective for common cases

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 6 / 25



Drawbacks of disk-based checkpoint

Checkpoints to the parallel file system are slow

High Recovery time:

I Time between the last checkpoint and the crash
I Time to resubmit the job and have it run

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 7 / 25



Drawbacks of disk-based checkpoint

Checkpoints to the parallel file system are slow

High Recovery time:
I Time between the last checkpoint and the crash

I Time to resubmit the job and have it run

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 7 / 25



Drawbacks of disk-based checkpoint

Checkpoints to the parallel file system are slow

High Recovery time:
I Time between the last checkpoint and the crash
I Time to resubmit the job and have it run

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 7 / 25



In-memory Double Checkpoint: Checkpoint

Coordinated checkpoint

Each object maintains 2 checkpoints:
I On local processor
I On a remote buddy processor

Checkpoints are stored in memory

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 8 / 25



In-memory Double Checkpoint: Checkpoint

Coordinated checkpoint

Each object maintains 2 checkpoints:
I On local processor
I On a remote buddy processor

Checkpoints are stored in memory

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 8 / 25



In-memory Double Checkpoint: Checkpoint

Coordinated checkpoint

Each object maintains 2 checkpoints:
I On local processor
I On a remote buddy processor

Checkpoints are stored in memory

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 8 / 25



In-memory Double Checkpoint: Checkpoint

Coordinated checkpoint

Each object maintains 2 checkpoints:
I On local processor
I On a remote buddy processor

Checkpoints are stored in memory

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 8 / 25



In-memory Double Checkpoint: Restart

A dummy process is created to replace the crashed processor

New process starts recovery on other processors

Other processors
I Remove all objects
I Use the buddy’s checkpoint to recreate objects from the crashed

processor
I Recreate your own objects from their local copy of the checkpoint

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 9 / 25



In-memory Double Checkpoint: Restart

A dummy process is created to replace the crashed processor

New process starts recovery on other processors

Other processors
I Remove all objects
I Use the buddy’s checkpoint to recreate objects from the crashed

processor
I Recreate your own objects from their local copy of the checkpoint

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 9 / 25



In-memory Double Checkpoint: Restart

A dummy process is created to replace the crashed processor

New process starts recovery on other processors

Other processors
I Remove all objects
I Use the buddy’s checkpoint to recreate objects from the crashed

processor
I Recreate your own objects from their local copy of the checkpoint

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 9 / 25



In-memory Double Checkpoint: Pros and Cons

Advantages:
I Faster checkpoints than disk based
I Reading checkpoints during recovery is also faster
I Only one processor fetches checkpoint across the network

Drawbacks:
I High memory overhead
I All processors are rolled back even if one crashes
I All the work since the last checkpoint is redone on all processors
I Recovery time: Time between the crash and the previous checkpoint

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 10 / 25



In-memory Double Checkpoint: Pros and Cons

Advantages:
I Faster checkpoints than disk based
I Reading checkpoints during recovery is also faster
I Only one processor fetches checkpoint across the network

Drawbacks:
I High memory overhead
I All processors are rolled back even if one crashes
I All the work since the last checkpoint is redone on all processors
I Recovery time: Time between the crash and the previous checkpoint

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 10 / 25



Message logging

Only processed messages affect the state of a processor

After a crash, reprocess old messages to regain lost state

Messages are stored during execution

After a crash, only crashed processors are rolled back

Other processors resend their messages

Caveat: State of a processor is affected by the sequence of messages
as well

I Message processing sequence needs to be stored
I Processors need to ignore messages they have already processed

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 11 / 25



Message logging

Only processed messages affect the state of a processor

After a crash, reprocess old messages to regain lost state

Messages are stored during execution

After a crash, only crashed processors are rolled back

Other processors resend their messages

Caveat: State of a processor is affected by the sequence of messages
as well

I Message processing sequence needs to be stored
I Processors need to ignore messages they have already processed

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 11 / 25



Message logging

Only processed messages affect the state of a processor

After a crash, reprocess old messages to regain lost state

Messages are stored during execution

After a crash, only crashed processors are rolled back

Other processors resend their messages

Caveat: State of a processor is affected by the sequence of messages
as well

I Message processing sequence needs to be stored
I Processors need to ignore messages they have already processed

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 11 / 25



Message logging: Challenges

All the work of the crashed processor is redone by one processor

Recovery time: Same as checkpoint/restart

Most parallel applications are tightly coupled

Other processors have to wait for the crashed processor to recover

Fault free overhead is often high

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 12 / 25



Message logging: Challenges

All the work of the crashed processor is redone by one processor

Recovery time: Same as checkpoint/restart

Most parallel applications are tightly coupled

Other processors have to wait for the crashed processor to recover

Fault free overhead is often high

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 12 / 25



Message logging: Objectives

Fast recovery: Faster than time between the crash and the previous
checkpoint

Do not assume a stable storage

Tolerate all single and most multiple processor faults

Low performance penalty for the fault free case

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 13 / 25



Message logging: Our idea

During restart distribute the work of the restarted processor among
the waiting processors

How can the work on one processor be divided ?

Object based Processor Virtualization

Combine processor virtualization and message logging

Improves fault free performance as well

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 14 / 25



Message logging: Our idea

During restart distribute the work of the restarted processor among
the waiting processors

How can the work on one processor be divided ?

Object based Processor Virtualization

Combine processor virtualization and message logging

Improves fault free performance as well

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 14 / 25



Message logging: Our idea

During restart distribute the work of the restarted processor among
the waiting processors

How can the work on one processor be divided ?

Object based Processor Virtualization

Combine processor virtualization and message logging

Improves fault free performance as well

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 14 / 25



Message logging: Our idea

During restart distribute the work of the restarted processor among
the waiting processors

How can the work on one processor be divided ?

Object based Processor Virtualization

Combine processor virtualization and message logging

Improves fault free performance as well

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 14 / 25



Message logging: Our idea

During restart distribute the work of the restarted processor among
the waiting processors

How can the work on one processor be divided ?

Object based Processor Virtualization

Combine processor virtualization and message logging

Improves fault free performance as well

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 14 / 25



Message Logging and Virtualization

Virtual processors are the communicating entities

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 15 / 25



Modifying message logging to work with Virtualization

When sender and receiver are on the same processor

The receiver and message log are on the same processor

If processor crashes not only does the log dissapear but more
importantly its TN disappears

Solved by storing some meta-data about such a message on a buddy
processor

During restart redistribute the VPs on the restarted processor among
all processors

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 16 / 25



Fast Restart Performance

7 point stencil with 3D
domain decomposition

MPI program

16 processor run on
Opterons with 1GB RAM
and Gigabit

Checkpoint every 30s

Simulate fault after 27s

2-16 vps per processor

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 17 / 25



Fault free performance

AMPI AMPI-FT AMPI-FT with multiple VP

We got good performance for MG, SP and CG but bad for LU

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 18 / 25



Closer look at MG and LU

MG on 8 processors LU on 8 processors

AMPI AMPI-FT AMPI AMPI-FT

Computation Time 68.18% 68.29% 86.56 % 87.81%
Idle Time 25.56% 22.75% 12.41 % 48.28%
Message Send 4.34% 5.01% 0.62 % 2.30 %
Ticket Request Send 4.54% 0.63%
Ticket Send 1.37% 1.01%
Local Message 2.10% 0.00%

Total 98.08 % 104.06% 99.59 % 140.03 %

Lower granularity of LU increases Idle time

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 19 / 25



Optimizations

Synthetic benchmark

High overhead for low granularity

Increasing vps helps

100 us case still pretty high

Combine protocol messages

Reduces cpu overhead

Alleviates network congestion

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 20 / 25



Optimizations: Evaluation

Real application: leanMD

BUTANE molecular
system is very small

16 processor test cluster

Iteration time 13ms

A message every 45µs on
each proc

WORST CASE

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 21 / 25



Future Work

Load balancing with message logging

Remove the need for extra processors

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 22 / 25



Pro-active Fault Tolerance

Modern hardware can be used to predict failures

Runtime system responds to warning
I Low response time
I No extra processors required
I Efficiency loss should be proportional to loss in computational power

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 23 / 25



Processor Evacuation

Migrate Charm++ VPs off processor

Point to Point messaging should continue to work correctly

Collective operations should continue to work

Rewire reduction tree around a warned processor

Can deal with multiple simultaneous failures

Load balance after an evacuation

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 24 / 25



Summary

Charm++/AMPI provides multiple fault tolerance protocols

Disk based Checkpoint/Restart

In memory Checkpoint/Restart

Proactive fault tolerance

Message logging with fast recovery under development

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 25 / 25



Summary

Charm++/AMPI provides multiple fault tolerance protocols

Disk based Checkpoint/Restart

In memory Checkpoint/Restart

Proactive fault tolerance

Message logging with fast recovery under development

Sayantan Chakravorty (PPL, UIUC) Fault Tolerance in Charm++/AMPI April 19, 2007 25 / 25


	Outline
	Motivation
	Background
	Checkpoint-based
	Co-ordinated disk-based
	In-memory double checkpoint

	Message Logging
	Pro-active fault tolerance
	Summary

